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Abstract
A method for calibrating indicating instruments that exploits the combinatorial properties of a
set of different-valued, and mostly uncalibrated, artefacts is described. The paper presents the
underlying principles of the method, its limitations, and examples of the application of the
method to mass balances, optical detectors and resistance bridges. The method is applicable to
indicating instruments that measure rational quantities and for which it is possible to combine
artefacts with negligible error. For direct-reading instruments, at least one of the artefacts
should be calibrated. For ratio-indicating instruments, none of the artefacts need be calibrated.
It is shown that for artefacts that can be combined linearly, a binary sequence generally comes
close to maximizing the number of combinations available.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

This paper demonstrates a method for calibrating indicating
instruments that exploits the combinatorial properties of a set
of different-valued, and mostly uncalibrated, artefacts. The
method, as a generalized technique, has evolved from the
application of a resistor network to the calibration of resistance-
thermometry bridges [1–5]. However, the method can be
recognized in earlier and independently developed techniques
for measurements of optical detector non-linearity [6, 7],
calibration of mass balances [8], rf attenuator calibration [9]
and probably others. The explanation of the method in the
case of resistance-bridge calibration [1,3] invokes two simple
mathematical results: one relating to an assessment of non-
linearity and one relating to an assessment of linear error.
The purpose of this paper is to show how these two results,
and hence the combinatorial method, can be generalized
and applied to the calibration of a wide range of indicating
instruments.

In the following section, we explain the underlying
principles of the combinatorial method. In sections 3, 4
and 5, we present examples of the application of the method
to calibration problems from the disciplines of mass, optical,
and electrical-resistance metrology. Each example highlights
different aspects of the method. In sections 6 and 7 we
consider the limitations of the method and investigate the
number of combinations that can be realized from a limited

number of artefacts. Finally, we summarize the results and
draw some conclusions.

2. The combinatorial method

2.1. Rational quantities

Measurement is the symbolic representation of an attribute,
state or event to aid in the making of a decision. In 1946,
Stevens suggested a scheme for classifying measurement
scales, the systems of symbols used to report measurements,
based on the mathematical operations permitted on the symbols
[10, 11]. While the scheme has been the subject of some
controversy [12], it offers insights into limitations in the
interpretation of measurements, assessment of uncertainty
and the realization of standards for different systems of
measurement. The permitted mathematical operations for the
different types of scales are relevant here.

Nominal scales use symbols simply to name attributes,
states or events. Examples of nominal scales include colours
(red, blue, etc), quantum states (spin up and spin down), the
elements of the periodic table (H, He, Li, etc), and the numbers
on the face of a die (1 to 6). As the examples show, the symbols
need not be numeric. With nominal scales, the equivalence
of two measurements can be established, but the concepts of
order (greater or less than), interval (difference), and ratio are
meaningless.
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Ordinal scales enable both order and equality to be
established. Well-known examples include the Moh hardness
scale (1 to 10) and the Beaufort wind-strength scale (calm to
hurricane or 1 to 12). Amongst mechanical engineers and
metallurgists, the Rockwell and Brinnell hardness scales are
also well known.

Interval scales enable order and equivalence to be
established, and, additionally, meaningful interpretation of
intervals or differences. They are the simplest scales where
addition and subtraction of results (e.g. for calculating mean
and standard deviation) are meaningful. Such scales include
time and calendar systems, latitude and longitude and the
modern Fahrenheit and Celsius temperature scales. Interval
scales, because they are characterized by an artificial zero,
require two standards to define them (e.g. the boiling and
freezing points of water for the Celsius and Fahrenheit
temperature scales).

Rational scales have all the properties of interval scales,
plus the additional property of being able to form meaningful
ratios. Thus, for example, it is meaningful to say that 2 kg is
twice 1 kg; similar statements about ratios of measurements
on the other scales are meaningless. All of the measurement
scales defined under the SI are rational. Unlike interval scales,
rational scales have a natural zero (e.g. Kelvin and Rankine
temperature scales).

Rational scales have two properties of relevance here.
Firstly, the ability to form meaningful ratios means that the
rational scales can be defined in terms of a single standard (the
unit). That is, the result, a, of any measurement of a rational
attribute (quantity), A, of an artefact X can be expressed as a
real number, ρ, times the same attribute of the standard, XS:

a = A(X) = ρA(XS). (1)

Secondly, rational quantities are linear; that is

A(X1 + X2) = A(X1) + A(X2). (2)

These two properties underlie the combinatorial method.

2.2. Assessment of non-linearity

Consider measurements, a1 and a2, of the rational attribute A

of two artefacts X1 and X2,

a1 = A(X1), (3a)

a2 = A(X2), (3b)

and a third measurement of the sum of the two artefacts,

a12 = A(X1 + X2). (4)

Now, because the attribute A is a rational quantity we expect
(equation (2)), ideally,

a1 + a2 − a12 = 0. (5)

In practice, there will be errors in the instrument’s readings so
that

a1 + a2 − a12 = ξ(a1) + ξ(a2) − ξ(a12), (6)

where ξ(a) is the function describing the error in the
instrument’s readings.

The linearity test, equation (6), therefore provides
information on the relationship between the errors in the three
measurements, but not enough information to calculate unique
values for the errors. In particular, under some circumstances,
the right-hand side of equation (6) may be zero even though
each error is not zero, indicating incorrectly that the instrument
is free of error. If equation (6) is zero for all possible pairs
of artefacts X1 and X2, then the instrument error ξ(a) must
be a linear function, i.e. a straight line through zero [13].
Alternatively, if the instrument readings depart from linearity,
then a sufficient number of measurements of the type implied
by equation (6), using different combinations of artefacts, will
expose the non-linearity.

Some instruments, such as resistance bridges, are designed
not to indicate the value a = A(X), but the ratio with respect
to the same attribute of a reference artefact, XR. For ratio-
indicating instruments, the three measurements (3a), (3b)
and (4) would be replaced by

ρ1 = A(X1)

A(XR)
, (7a)

ρ2 = A(X2)

A(XR)
, (7b)

ρ12 = A(X1 + X2)

A(XR)
, (7c)

and the linearity test would be

ρ1 + ρ2 − ρ12 = ξ(ρ1) + ξ(ρ2) − ξ(ρ12), (8)

where, as before, ξ(ρ) is the function describing the error in
the instrument’s readings.

An important feature of equations (6) and (8) is that it
is not necessary to know the values of the attributes of the
artefacts. It is sufficient to know that the artefacts are stable
for the duration of the measurements and can be combined
without error.

2.3. Assessment of linear error

2.3.1. Direct-reading instruments. Since departures from
linearity can be detected, assume for the moment that the errors
in the instrument readings are linear:

A(X) = Aideal(X) + ξ(a) = Aideal(X)(1 + ε), (9)

where ε characterizes the linear departure from ideal (where
ε = 0). For a direct-reading instrument, the error can
be determined simply by using the instrument to measure a
calibrated artefact (equation (1)):

a′
S = A(XS) = aS(1 + ε), (10)

where a′
S is the value indicated by the instrument under test

and aS is the value of the artefact determined previously by
calibration.

Since all errors are either non-linear or linear, and the
tests (6) and (10) detect both types of errors, the combination
of a measurement of one calibrated artefact and a number of
linearity assessments is, in principle, sufficient to detect all
types of errors in the instrument’s readings.
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2.3.2. Ratio-indicating instruments. To determine the linear
errors in a ratio-indicating instrument, there is a more powerful
test than equation (10). Again, assume the errors in the
readings are linear; that is,

ρ1 = Aideal(X1)

Aideal(XR)
(1 + ε). (11)

With a ratio-indicating instrument, it is possible to exchange
the artefacts and make a reciprocal (or complement [14])
measurement:

ρ2 = Aideal(XR)

Aideal(X1)
(1 + ε). (12)

Ideally, the product of the two measurements is equal to 1, but
in practice,

ρ1ρ2 = (1 + ε)2. (13)

Thus, the combination of a ‘normal’ and a reciprocal
measurement will detect linear errors. In this case, because
the instrument reading is dimensionless, a calibrated artefact
is not required.

2.4. Making an over-determined system

All of the simple measurements described above are used in
a number of fields of metrology to verify the performance of
instruments. As described, the checks greatly enhance the
confidence in an instrument, but by themselves they fail to
provide the necessary information for a calibration: namely,
sufficient data to make good estimates of the corrections and
uncertainties in the instrument’s readings.

The linearity test for direct-reading instruments illustrates
the problem. Equation (6) has five unknown variables, A(X1),
A(X2), ξ(a1), ξ(a2) and ξ(a12), but is based on only three
measurements. Thus, so long as the artefacts are uncalibrated
(i.e. the two attribute values are unknown), there is insufficient
information to determine unique values for the three errors.
Such systems are described as under-determined. Further,
every time a new measurement is added to the set (e.g. by
using another artefact or combination of current artefacts), at
least one new unknown of the form ξ(a) is added to the set,
and the system remains under-determined.

The key principle of the combinatorial method is that
it is not necessary to know the error associated with every
reading. It is sufficient to characterize the distribution of the
errors for many readings. To do this, the system must be over-
determined. This is achieved as follows.

Firstly, the number of measurement results available to
determine values for the various parameters is increased by
generating a large number of artefact combinations from a
small or modest number of artefacts. As implied in section 2.3,
it is not necessary for all of the artefacts to be of standards
quality (i.e. be calibrated or have good long-term stability);
stability over the duration of the measurements is sufficient.

Secondly, the number of unknown variables is reduced by
approximating the error function ξ(a) by a simple algebraic
function (the correction equation) with few parameters.
Conceptually, the correction equation characterizes the mean

of the distribution of errors as a function of reading, while
the standard deviation of the residual errors characterizes the
uncertainty in the corrected readings. The ideal correction
equation is one that leaves a random distribution of residual
errors.

2.5. The method

The calibration method is, in principle, simple. A number of
stable artefacts are prepared, and measured in as many different
combinations as is practical using the instrument under test.
For direct-reading instruments, at least one of the artefacts
should be calibrated. For ratio-indicating instruments, as
many reciprocal measurements as is practical should be
included amongst the measurements. The measurements
are then analysed to determine the values for each artefact,
the instrument corrections and the uncertainties in these
parameters.

The calibration of a mass balance is possibly the simplest
example of the application of the method, since the masses can
be combined simply by placing them on the balance pan. When
calibrating a balance using m different masses, each mass has
two possible positions: on or off the pan. Hence the positions
of the masses can be described by an m-bit binary number, and
there are 2m−1 non-zero combinations. So long as the number
of combinations exceeds the number of unknown parameters
in the system, the measurements can be analysed to estimate
the parameter values. (This example is considered in detail in
section 3.)

2.6. Analysis

Analysis proceeds by least-squares fit to find the values for the
unknown parameters. If no correction equation is used, and
only the unknown artefact values are determined, the simplest
least-squares cost function is

s2 = 1

N − n

N∑
i=1

(ai,meas − ai,calc)
2, (14)

where ai,meas are the N measurements, ai,calc are the estimates
of the measurements calculated from the fitted or known values
of the artefacts, and n is the number of fitted parameters.
Equation (14) is then minimized to determine the parameter
values. With an appropriate selection of artefacts, the
measurement process samples the instrument errors over a
wide range of readings. When minimized, equation (14) gives
the variance of the residual errors: a measure of the standard
uncertainty in the instrument readings. The least-squares fit
may be linear or non-linear depending on the form of the
function that determines ai,calc, which in turn depends on the
way the artefacts combine. Section 5 gives an example where
the functional form for ai,calc is non-linear in the artefact values.

If the instrument has significant departures from ideal
behaviour, then a correction equation can also be fitted. The
simplest least-squares cost function in this case is

s2 = 1

N − n

N∑
i=1

(ai,meas + �a(ai,meas) − ai,calc)
2, (15)
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where �a(a) is the correction equation approximating the
function −ξ(a) (equation (6) or (8)), and n now includes
the number of fitted parameters in the equation as well as
the number of fitted values for the artefacts. In this case,
the variance, equation (15), is a measure of the standard
uncertainty in the corrected readings of the instrument. Note
that N −n is the number of degrees of freedom associated with
the variance.

Often a simple cubic correction equation is sufficient:

�a = A + Ba + Ca2 + Da3, (16)

as this includes terms for characterizing the linear error (Ba),
and three types of non-linearity, including an offset (A), a
quadratic or weak even-order non-linearity (Ca2) and a cubic
or weak odd-order non-linearity (Da3). Other models of the
instrument error may be used if appropriate. An example
analysis is given in section 3. At least one of the artefacts
must be calibrated in order to determine a value for B in
equation (16).

The equations for the least-squares cost functions,
equations (14) and (15), should be modified to include
statistical weights if the uncertainties in the readings are
not similar. In this case, the uncertainties in the readings
are estimated a priori and the least-squares cost function
estimates the number of degrees of freedom associated with
the fit [15, 16].

While equations (14) and (15) apply to direct-reading
instruments, the discussion and analogous equations apply
equally to ratio-indicating instruments. Moreover, when one
or more reciprocal measurements are included in the analysis,
equation (13) ensures that the linear error, Ba (equation (16)),
can be determined, and a calibrated artefact is not required.
Whenever reciprocal combinations are included in the analysis,
a non-linear least-squares-fit algorithm is required.

3. Application to a mass balance

This example provides a simple illustration of the
combinatorial method. However, it is not usual to calibrate
laboratory balances in the manner we propose here [17]. For
the highest-accuracy applications, such as in a metrology
laboratory, balances are used as comparators, so a formal
calibration is not necessary. In more general-purpose
applications, the balance non-linearity is usually negligible,
so that only zero and scale adjustments are necessary.
An exception to these conventions is the calibration of
weighbridges, which are required for cargo management
(e.g. for air transport) and road-safety enforcement, so that
traceability over a wide range of readings is required.

The first published example of combinatorial principles
applied to the calibration of a mass balance is by Nielsen
[8], who used three artefacts, one of which was calibrated.
The measurements and analysis also provided a simultaneous
calibration of the two remaining artefacts. More recently,
Nielsen has suggested a binary sequence of masses [16]. Two
of the authors have experimented with similar schemes for
calibrating balances and weighbridges [5, 18].

When calibrating a mass balance using m different masses,
each mass may be on or off the balance pan. Hence, the 2m −1
possible combinations of the masses can be described by an
m-bit binary number. Note that the zero combination is omitted
because, conventionally, balances are zeroed before use. Some
balances exhibit sensitivity to the location of the mass on the
pan, so that it is possible that the masses may not be combined
without error. In these cases, care must be taken to either load
the pan symmetrically to avoid these errors, or to load the pan
randomly to deliberately sample the effect. If the pan-locations
are randomized, the errors are averaged in the analysis and the
measured variations in the effect contribute to the measured
variance.

There are also a large number of possible sequences of
combinations that could be used. Table 1 shows two interesting
five-mass sequences defined by the binary functions Fj,i . For
both sequences, the mass of the ith combination of masses is
given by

ai,calc(M1, M2, M3, M4, M5) =
5∑

j=1

MjFj,i , (17)

where the Mj are the masses of the five base artefacts. Where
Fj,i = 1, the j th mass is on the pan.

If the five masses form a binary sequence with M1 >

M2 > M3 > M4 > M5, the first sequence in table 1 has the
combinations in order of increasing mass, reflecting the way
most balances are used. The second sequence is based on a
binary sequence known as a Gray code [19]. The sequence
has the property that only one mass is moved between each
combination, which ensures that the minimum of artefact
movements is required to do the calibration. Additionally,
this particular version of the sequence has the most significant
binary digits (which may be chosen by the operator to
correspond to the largest masses) moved least frequently, so is
suited to the calibration of large balances such as weighbridges.

The Gray-code sequence has two other advantages.
Firstly, it has the property that approximately half of the
measurements are made on increasing mass, and half on
decreasing mass. Thus, the Gray-code sequence provides a
way of sampling and averaging hysteresis effects. Secondly,
because it mixes up the combinations so that they are not in
an ascending or descending sequence, errors in the readings
will not be correlated with monotonic drifts in either the
instrument or the artefacts. This is important, for example, on
large-capacity balances using load cells as transducers. Load
cells often warm up as energy is dissipated during plastic
deformations of the load cell. The randomized sequence
ensures that the errors due to the warming are randomly
sampled and become apparent in the variance of the residual
errors of the fit (equation (14) or (15)).

The combinatorial method is especially convenient for the
calibration of large-capacity balances. A full set of standard
masses suitable for the calibration of a weighbridge, for
example, literally requires the maintenance and transport of a
truckload of standard masses [20]. The combinatorial method
makes it possible to calibrate weighbridges using a single
standard mass, and whatever convenient masses are available
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Table 1. Two sets of binary sequences for constructing combination functions for a mass-balance calibration.

Increasing sequence Gray-code sequence

i F1,i F2,i F3,i F4,i F5,i F1,i F2,i F3,i F4,i F5,i

1 0 0 0 0 1 1 0 0 0 0
2 0 0 0 1 0 1 0 0 0 1
3 0 0 0 1 1 1 0 0 1 1
4 0 0 1 0 0 1 0 0 1 0
5 0 0 1 0 1 1 0 1 1 0
6 0 0 1 1 0 1 0 1 1 1
7 0 0 1 1 1 1 0 1 0 1
8 0 1 0 0 0 1 0 1 0 0
9 0 1 0 0 1 1 1 1 0 0

10 0 1 0 1 0 1 1 1 0 1
11 0 1 0 1 1 1 1 1 1 1
12 0 1 1 0 0 1 1 1 1 0
13 0 1 1 0 1 1 1 0 1 0
14 0 1 1 1 0 1 1 0 1 1
15 0 1 1 1 1 1 1 0 0 1
16 1 0 0 0 0 1 1 0 0 0
17 1 0 0 0 1 0 1 0 0 0
18 1 0 0 1 0 0 1 0 0 1
19 1 0 0 1 1 0 1 0 1 1
20 1 0 1 0 0 0 1 0 1 0
21 1 0 1 0 1 0 1 1 1 0
22 1 0 1 1 0 0 1 1 1 1
23 1 0 1 1 1 0 1 1 0 1
24 1 1 0 0 0 0 1 1 0 0
25 1 1 0 0 1 0 0 1 0 0
26 1 1 0 1 0 0 0 1 0 1
27 1 1 0 1 1 0 0 1 1 1
28 1 1 1 0 0 0 0 1 1 0
29 1 1 1 0 1 0 0 0 1 0
30 1 1 1 1 0 0 0 0 1 1
31 1 1 1 1 1 0 0 0 0 1

and mobile. One of the authors (MTC) has used in such a
calibration, a truck, a forklift, and the forklift driver for the
uncalibrated masses [18]. For weighbridges, the combinatorial
method has lower maintenance costs, lower shipping costs,
takes less time and produces more information on the
uncertainties in the weighbridge readings than conventional
methods.

Note that the contribution of the uncertainty in the value of
the standard mass should be included in the total uncertainty in
the corrected readings. Because the standard mass determines
the linear scale factor for the balance, the uncertainty in the
corrected readings due to uncertainty in the standard mass
tends to scale in proportion to the reading and be amplified in
inverse proportion to its mass. This means that tolerance limits
on the total uncertainty impose a lower limit on the mass of
the standard mass.

Figure 1 shows the results of a non-linearity assessment
of a 5 kg balance using five masses of nominal mass 2 kg, 1 kg,
1 kg, 0.5 kg and 0.2 kg, and the Gray-code sequence. In this
case, all of the values of the masses are fitted, but no correction
equation is applied. The results show clearly that there is
some non-linearity. Note that the least-squares-fit algorithm
(from equation (14)) adjusts the estimates of the mass values
to minimize the dispersion of the residual errors. This means
that the algorithm will have a weak tendency to obscure the
non-linearity and introduce small biases in the values of the
masses.

The least-squares analysis of the data of figure 1 proceeds
by differentiating the cost function (equations (14) with (17))
with respect to each of the mass values. This yields five
equations of the form

ds2

dMk

= −2

26

31∑
i=1


ai,meas −

5∑
j=1

MjFj,i


 Fk,i . (18)

The minimum variance is determined by setting each of the
equations to zero and, hence, the normal equations of least
squares are (in matrix form)


∑
i

F 2
1,i · · · ∑

i

F1,iF5,i

...
. . .

...∑
i

F5,iF1,i · · · ∑
i

F 2
5,i







M1
...

M5


 =




∑
i

ai,measF1,i

...∑
i

ai,measF5,i


 .

(19)

The leading matrix has a simple form since
31∑
i=1

F 2
j,i = 24, and

31∑
i=1

Fj,iFk,i = 23, so the equations are easily solved to yield

M1 = 1

48

∑
i

ai,meas(5F1,i − F2,i − F3,i − F4,i − F5,i ),

(20)
with the other masses determined by similar equations.
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Figure 1. The estimate of the errors, ai,meas − ai,calc, in the readings
of a 5 kg balance determined using a combinatorial assessment with
five uncalibrated masses. The standard deviation of the residual
errors is 7 mg.

When the full combinatorial method is applied to the data,
the analysis is carried out with mass M1 assigned its calibrated
value, and a correction equation is included in the least-squares
cost function. An equation of the form of equation (16) is
chosen with the offset defined to be zero (since the balance is
adjusted at this point). Now the normal equations become


∑
i

F 2
2,i ··· ∑

i

F2,iF5,i

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-∑

i

F2,iai,meas ··· ∑
i

F2,ia
3
i,meas

...
. . .

...
...

. . .
...∑

i

F5,iF2,i ··· ∑
i

F 2
5,i

∑
i

F5,iai,meas ··· ∑
i

F5,ia
3
i,meas

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -∑
i

F2,iai,meas ··· ∑
i

F5,iai,meas
∑
i

a2
i,meas ··· ∑

i

a4
i,meas

...
. . .

...
...

. . .
...∑

i

F2,ia
3
i,meas ··· ∑

i

F5,iai,meas
∑
i

a4
i,meas ··· ∑

i

a6
i,meas




×




M2
...

M5

- - -
−B

−C

−D




=




∑
i

(
ai,meas −M1F1,i

)
F2,i

...∑
i

(
ai,meas −M1F1,i

)
F5,i

- - - - - - - - - - - - - - -∑
i

(
ai,meas −M1F1,i

)
ai,meas∑

i

(
ai,meas −M1F1,i

)
a2

i,meas∑
i

(
ai,meas −M1F1,i

)
a3

i,meas




. (21)

Note that the leading 7 × 7 matrix is partitioned into four
blocks. The upper left-hand block has the same form as the
leading matrix of equation (19). The lower right-hand block
is as expected for a simple polynomial fit using the correction
equation. The two off-diagonal blocks are the transpose of
each other and are a mix of the two diagonal blocks.

Figure 2 shows the results of the experiment of figure 1
reanalysed with the value for the 2 kg standard mass fixed at
its calibrated value, and with the correction equation fitted.
With the inclusion of the correction equation, the non-linearity
has become more apparent and the standard deviation of the

Figure 2. The results of a reanalysis of the data of figure 1 with a
correction equation and a fixed value for the nominal 2 kg mass. The
fitted correction equation is indicated by the solid line. The standard
deviation of the residual errors is 2 mg.

residual errors has dropped from 7 mg to 2 mg. Note that the
balance was initially adjusted to read 0 kg for zero mass, and
full scale was adjusted using a calibrated 5 kg mass so that
the correction curve is expected to pass through zero at 0 kg
and 5 kg.

4. Measuring optical detector non-linearity

There are essentially three recognized methods for assessing
the linearity of optical and infrared detectors [21]: the
superposition method [6, 7], the attenuation method [22]
and the differential or ac method [23]. Variations on these
methods can also be found for calibrating rf attenuators [9]
and for assessing the linearity of rf tunnel-diode detectors [24].
Both the superposition method and the differential method
exploit the linearity test (equation (6)), but the superposition
method, first proposed by Coslovi and Righini [6], most clearly
exploits the same principles as the combinatorial approach. As
currently implemented, however, these methods are used only
for assessing the non-linearity of optical detectors. The linear
scale factors are typically determined in separate comparisons
with standard sources.

The superposition method is most commonly used in the
form known as flux doubling [25]. If the linearity test is carried
out with two artefacts with attributes of the same magnitude
then equation (6) can be rewritten as

2A(X) − A(2X) = 2ξ(a) − ξ(2a). (22)

This shows that the instrument error at 2a, ξ(2a), can be
found in terms of the two measurements, A(X) and A(2X),
and the error at a, ξ(a). Equation (22) is applied recursively
so that the non-linearity is determined at 2a, 4a, 8a and
so on, with each expressed in terms of the sequence of
measurements and the non-linearity at a, where the lowest
measurement was made. Thus, the non-linearity is determined
at a sequence of exponentially spaced points, except for one
piece of information: the error at a. It turns out that the error
in the first point is required only for absolute radiometry [26].
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Figure 3. Simplified schematic diagram of the detector-linearity
testing facility [7, 27, 28].

Thus the flux-doubling method enables measurement of non-
linearity and an additional calibration point is required to
anchor the detector response absolutely, much as described in
sections 2.2 and 2.3. Unfortunately, the flux-doubling method
produces sparse, exponentially spaced data with cumulating
uncertainties. The paucity of data can make it difficult
to prove the validity of a model of non-linearity and to
make experimental determinations of the uncertainties in the
measurements.

Saunders and Shumaker [7], Thomson and Chen [27], and
more recently Yoon et al [28], demonstrate a version of the
superposition method that sums light over two paths, as with
the flux-doubling method, but with three filter wheels holding
neutral density filters inserted into the system, as shown in
figure 3. Filter wheels 1 and 2 each have 5 positions labelled
by an index i and j , respectively, with i = 0 and j = 0
corresponding to opaque shuttered positions. Filter wheel 3
has 6 positions labelled by index k, with k = 0 being a shuttered
position. The total flux through the two paths is additive so that

acalc(i, j, k) = φ1(i, k) + φ2(j, k), (23)

where φ1 and φ2 are, respectively, the fluxes through the first
and second paths. For a single path there are 30 possible filter
combinations, 10 of which are nominally shuttered. Thus,
there are a total of 20 non-zero combinations of filters, or 20
different flux levels, for each path. The shuttered positions are
used to compensate for the dark current of the detector, so are
not included amongst the valid combinations. With all possible
combinations of i, j and k, there are 120 non-zero flux levels.
The system is a realization of the combinatorial method with
120 measurements and 40 unknown artefact parameters.

A least-squares fit is used to simultaneously fit the 40
artefact parameters and determine the distribution of the non-
linearities. For the best solid-state detectors, no correction
equation is necessary, so the least-squares cost function is

s2 = 1

80

∑
i

∑
j

∑
k

(ameas(i, j, k) − acalc(i, j, k))2. (24)

Standard uncertainties of 0.02% have been achieved for silicon
detectors (figure 4), and 0.04% for InGaAs detectors.

A distinct advantage of the combinatorial technique
over other non-linearity determining techniques, such as flux

Figure 4. The non-linearity in a silicon detector determined using
the combinatorial method [28]. Three separate sets of 120
measurements are plotted.

doubling, is that the large surplus of data enables different
functions to be thoroughly tested for correction of the non-
linearity. For instance, the setup shown in figure 3 can be
used to determine the dead time for pulse-counting circuits
as utilized in photon counting or x-ray counters. Dead-time
effects occur when the detector (often a photomultiplier tube)
or the electronic counting circuit cannot respond to every
incoming photon because the processing of the pulses requires
some finite time. The effect is modelled in terms of the average
rate of arrival of photons, R, and dead time, τ , by the Poisson
distribution [29]. When the probability of electron arrival is
summed over all numbers of photons, the measured rate of
arrival is observed to saturate at a rate of 1/τ , according to

Rmeas = R

(
1

1 + Rτ

)
. (25)

The effect of the dead time can be incorporated into the least-
squares cost function as

s2 = 1

79

∑
i

∑
j

∑
k

(
ameas(i, j, k) − acalc(i, j, k)

1 + τacalc(i, j, k)

)2

.

(26)

This form of the cost function minimizes the estimate of the
variance in the measurements. Equation (25) can also be
rearranged to give the formula for the corrected measurements:

R = Rmeas

(
1

1 − Rmeasτ

)
. (27)

The corresponding cost function that minimizes the variance
in the corrected measurements is

s2 = 1

79

∑
i

∑
j

∑
k

(
ameas(i, j, k)

1 − τameas(i, j, k)
− acalc(i, j, k)

)2

.

(28)

Note that both of the cost functions (26) and (28) are
non-linear in the parameter τ , so a non-linear least-squares
algorithm is required. Details on several non-linear least-
squares algorithms can be found in [15], and most algorithms
are available in commercial software libraries.
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R1

R3

R2

R4

Figure 5. A simplified diagram of the resistance network developed
for the calibration of resistance bridges.

Table 2. Examples of the four-terminal-resistance combinations
realizable with the network of figure 5. The + and || signs
respectively indicate series and parallel connection of the resistors.
The formulae for the other combinations are obtained by permuting
the indices of the four resistors.

Example combination Number of combinations

R1 4
R1 + R2 6
R1||R2 6
R1 + R2||R3 12
R1 + R2||R3||R4 4
R1||R2 + R3||R4 3

5. Application to resistance bridges

Until recently the calibration of ac resistance-thermometry
bridges was a long-standing problem in thermometry. The
best bridges measure resistance ratios and have uncertainties
approaching 108 in resistance ratio, which is much lower
than the relative uncertainty available for standard resistors
calibrated using ac. Although it was not possible to
calibrate the bridges as complete units at the required level of
uncertainty, there were a number of tests that built confidence
in the performance of the bridges. These include calibration
of the inductive voltage dividers used in the bridges [30, 31],
linearity tests of the complete bridge using resistors connected
in series [32], the reciprocal test described by equation (13),
and intercomparison of a small number of resistors.

Figure 5 shows the four-terminal resistance network
recently developed for the calibration of resistance-
thermometry bridges [1–4]. The details of its electrical
principles are described in [1, 3]. It consists of four four-
terminal resistors connected via a four-terminal junction so
that they can be combined in a total of 35 different series
and parallel combinations, as shown in table 2. The use of
both parallel and series combinations greatly increases the
number of combinations available from just four artefacts, but
also gives rise to non-linear relations between the different
combinations. The use of the parallel combinations and
reciprocal measurements both necessitate a non-linear least-
squares algorithm.

The measurements indicated by the bridge are the
resistance ratio RN/RR (normal ratios) or RR/RN (reciprocal
ratios), where RR is the resistance of the reference resistor used
by the bridge and RN represents the resistance of any one of the
35 combinations realized by the network. If the network is used
in both reciprocal and normal modes then up to 70 different

Figure 6. The results of a calibration of an 8-digit resistance bridge
yielding a standard deviation of residual errors of 2 × 10−8 in
resistance ratio. The solid line indicates the fitted correction
equation, �ρ = A + Bρ.

measurements, interrelated by just four resistance ratios, are
available to characterize the behaviour of the bridge.

Figure 6 summarizes the results of a calibration of an
8-digit ac resistance bridge. Not all of the 70 possible
resistance ratios were within the range of the bridge, so
the data include 34 normal measurements and 10 reciprocal
measurements. Figure 6 shows the residual errors determined
by fitting the four base ratios, R1/RR, R2/RR, R3/RR and
R4/RR, and a straight line (2-parameter) correction equation.
The results show that the bridge has a small offset (a non-linear
term) and linear errors in its readings, and that it is performing
well inside the manufacturer’s specification of ±2 × 10−7.

The most notable feature of this example is that the
combinatorial technique enables the calibration of the bridge,
including a correction equation with linear and non-linear
terms, with a standard uncertainty of about 2 × 10−8 in
resistance ratio, despite the fact that the values of the four
resistors R1, R2, R3 and R4 were only known to about 0.01%.

6. Limitations

6.1. Rational quantities

As described in section 2.1, the method depends on the ratio
property (equation (1)) and the linearity property (equation (2))
of rational quantities.

6.2. Extensive quantities

In order to carry out the linearity test (equation (6)), it is
necessary for the artefacts to be able to be added together in a
calculable manner. Extensive quantities such as mass, flux and
electrical resistance can be added together, as illustrated in the
examples. But it seems unlikely that artefacts characterizing
intensive quantities such as temperature and pressure could be
added together.
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6.3. Combining accuracy

With most combinatorial systems, there is a limit of
performance determined by the accuracy with which the
various artefacts can be combined. With the detector-linearity
example of section 4, light scattered off multiple surfaces
may lead to small errors in the formula for the calculated
flux (equation (23)). Similarly, with the resistance network
example there are several small errors associated with the
four-terminal junction, the combining network and Joule
heating of the resistors [1, 3], which lead to small errors in
the interrelationships between the base resistances and the
resistances of the combinations (table 2).

The typical effect of combining errors is to place a lower
bound on the variance (equations (14) and (15)) that can
be achieved in a calibration. In some cases the errors may
unfortunately be correlated with the measured value for the
combination (e.g. errors due to insulation resistance across
the resistor network) and be misinterpreted as an error in an
instrument. Careful design and modelling may be required to
minimize and assess the contribution of such errors.

One of the advantages of the combinatorial approach is
that the system is generally failsafe due to the high redundancy
in the measurements. That is, any unexpectedly large errors
associated with the combinatorial system will usually be
manifest as an unexpectedly poor variance when no correction
equation is used (equation (14)), thereby alerting the operator
to a problem.

6.4. Aliasing

Some indicating instruments have components of error that
are periodic. One of the most common is the quantization
error associated with analogue-to-digital converters (ADCs).
If a combination of artefacts effectively samples the readings
at equal intervals then aliasing can occur. That is, a periodic
error occurring at one frequency is misinterpreted as an error
occurring at another frequency [33].

This situation might seem unlikely, but low-resolution
instruments evaluated using artefacts in an accurately weighted
sequence (e.g. binary, trinary or quaternary sequences, see
section 7) can create just this situation. This can be overcome
with the use of artefacts with modest tolerances (slightly
randomized values), as this tends to randomize the values of the
combinations and sample the instrument readings at unequal
intervals.

6.5. Incongruent data and combination functions

In the least-squares cost function, equation (15), there are three
distinct terms under the summation sign: the measured data,
the correction equation and the combination function. In order
for the least-squares fit to determine unbiased values for the
parameters in the fit, these three terms must be distinguishable.
There are at least two situations where this may not be the case.

Firstly, if the errors in the instrument readings are caused
by errors in the binary weights of the ADC, and a binary
sequence of artefacts is used to test the instrument, then the
least-squares fit algorithm may accommodate the ADC errors

q

Figure 7. A simplified schematic diagram for a quaternary system
for measuring detector non-linearity.

within the fitted values for the artefacts. This will lead to biased
values for the artefacts and hence also for the coefficients
in a correction equation. Therefore, it is essential that the
function generating the values of the combinations (the third
term under the summation of equation (15)) and the errors
in the instrument are incongruent. For systems where only a
binary sequence of artefacts is possible (such as with single-
pan mass balances), it may be necessary to avoid this effect by
using several calibrated artefacts.

Secondly, if the combinations are measured in an
ascending or descending sequence, it is possible that drifts
in the artefact values (e.g. due to the temperature coefficients)
will be confused with non-linearity in the instrument readings.
Therefore, it is highly desirable that the sequence of
combinations is randomized. By randomizing the sequence
of readings, bias effects are reduced and the effects of the drift
become apparent in the variance of the residuals of the least-
squares fit. Gray-code sequences, such as the binary example
given in section 3, can help to randomize the sequence. Gray-
code sequences are also available for non-binary systems [34].

7. Optimizing the number of artefacts

Figure 7 shows a simplified schematic diagram of a
(hypothetical) quaternary combinatorial system for measuring
detector non-linearity. It is more efficient than that of figure 3
in the sense of producing a greater number of flux levels with
fewer artefacts. The operating principles can be understood
by noting that path q contains 2q beamsplitters, with each
beamsplitter causing the beam to be attenuated by a factor
of 2. Each path (excluding filters), therefore, has a nominal
attenuation of 4q , and the beam intensities for each path are
weighted as for a base-4 system. The q nominally identical
filter wheels hold neutral density filters that attenuate each
beam to form a 0, 1, 2, 3 quaternary sequence. Thus, the
system of figure 7 generates 4q equally spaced flux levels,
including zero. If the combination number is represented in
base-4 arithmetic, then each digit of the combination number
describes the state of the corresponding filter wheel. A four-
digit system with just 12 undetermined parameters (effectively
one for each non-zero filter) will generate 256 flux levels.

A binary system can also be constructed using beam
splitters with a transmit–reflect ratio of 1/(

√
2 − 1)

(approximately 71% : 29%), as shown in figure 8. In this case a
256-level system can be realized with 8 shutters and 8 pairs of
beamsplitters, and, therefore, only eight unknown parameters.
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q

Figure 8. A simplified schematic diagram for a binary system for
measuring detector non-linearity.

These two examples, and the previous examples, suggest
that the ability of a combinatorial system to generate a large
number of combinations relative to the number of artefacts is
linked to the base (radix) of the system. There are several
cases to consider. In the following subsections, we make
the distinction between linear and non-linear combinatorial
systems of artefacts. Linear combinatorial systems are those
where the artefacts add linearly, so that a linear least-squares
algorithm minimizing equation (14) is sufficient to determine
the values of the artefacts. The linearity or non-linearity of
the system of artefacts is distinct from that of the indicating
instrument, which may, separately, have either a linear or non-
linear calibration equation.

7.1. Linear systems with zero-valued artefacts

Consider the optical systems of figures 7 and 8. If each system
generates N distinct flux levels using a base-r system, then
each filter wheel has r filters and there are q = logr N filter
wheels. If one of the filter positions on each wheel is a shutter,
effectively providing a known zero-transmittance filter, then
the system has (r−1) logr N filters for which the transmittance
must be determined from the measurements. In general, in
any linear combinatorial system of artefacts, the number of
possible combinations using m non-zero artefacts in a base-r
system is N = rm/(r−1).

Figure 9 plots (the solid lines) the number of combinations
versus the number of unknown artefacts for such systems
employing base-2, base-3 and base-4 sequences of artefacts.
The plot shows that the base-2 (binary) systems generate
the greatest number of combinations for a given number
of artefacts. In fact, the number of artefacts required,
(r − 1) logr N , is minimized when r = 1, which is an
impossible system to realize. The best practical system is
base 2.

7.2. Linear systems without zero-valued artefacts

Consider the optical systems of figures 7 and 8, as before,
but in this case assume that each filter wheel has r filters,
all of which have non-zero transmittance. In this case, the
most efficient system requires r logr N artefacts. Thus the
number of combinations available is N = rm/r . This number is
maximized when r = e, where e is the mathematical constant.

Practical realizations require r to be an integer; therefore,
trinary (base-3) systems are the most efficient, closely followed

by binary and quaternary systems, which have the same
efficiency. Figure 9 also plots (as dotted lines) the number of
combinations for base-2, base-3 and base-4 systems without
known zero-valued artefacts.

The detector non-linearity experiment is a good example
of a combinatorial system that may not have zero-valued
artefacts. In its practical realization, it may be difficult to
eliminate scattered light so that the zero-transmittance position
of the filter wheels always passes a few photons. The amount of
scattered light can be measured from the experimental data by
fitting transmittance values for the nominal zero-transmittance
shutters. Similarly, some of the light scattered when the filter
wheels are in other positions is accommodated within the fitted
value for the respective filter transmittances.

7.3. Linear ternary systems

Ternary systems are an alternative base-3 system that can be
applied in systems where an artefact can be used to apply
both positive and negative influences. The ability to apply
both positive and negative influences with the same artefact
increases the number of possible combinations further. The
distinction between trinary and ternary systems is in the
numbers used: trinary systems use a 0, 1, 2 sequence whereas
ternary uses −1, 0, +1. Ternary systems can therefore use a
1, 3, 9, 27, . . . sequence of m artefacts to generate every value
from −(3m − 1)/2, through zero, up to (3m − 1)/2. The total
number of combinations is 3m. Figure 9 plots the number of
combinations for this case as the uppermost dashed line. If
only positive artefact values are acceptable, then the number
of combinations is half that indicated.

A classic example of a ternary system is the two-pan
(beam) balance. Each mass has three possible positions: off
the balance, on the left-hand pan or on the right-hand pan. For
example, the equivalent of a 21 kg mass can be obtained as
27 kg and 3 kg on one pan, and a 9 kg mass on the other pan
(21 = 27 − 9 + 3). The 1 kg mass is left off the balance.

7.4. Non-linear systems

It is difficult to draw general conclusions about the number of
combinations available in non-linear systems, since we have
only one example to consider.

The resistors in the network of figure 5 may be omitted,
combined in series or combined in parallel, so the system
generates combinations at a rate comparable to ternary
systems. However, not all resistance combinations expressible
as a ternary digit are realizable because of electrical constraints
requiring four terminals to be available for the resistance
measurement, and that all resistors are connected to the four-
terminal junction. However, despite these limitations, the
network realizes 35 distinct combinations from four artefacts,
which exceeds that for the best of the linear non-ternary
systems.

7.5. Practical constraints

The discussion in the previous subsections assumes that we
have complete freedom to choose the radix of the combinatorial
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Figure 9. The number of combinations versus unknown artefacts for different realizations of the combinatorial method.

system, but this may not be the case. With mass balances, for
example, a mass artefact is either on the pan or not; there is
no well-defined in-between state to exploit. Thus, single-pan
balances are restricted to binary combinations. This may not be
a serious handicap since binary systems are probably optimal
or very close to optimal for most instruments.

There are also practical limits to the number of artefacts
that can be usefully applied. Firstly, so long as a sufficient
number of combinations are generated to thoroughly sample
the indicator errors and ensure sufficient degrees of freedom
in the variance estimates (equations (14) and (15)), little is to
be gained by adding extra artefacts. Secondly, there is little
point in sampling at intervals comparable to or less than the
typical accuracy of the measurements. We have noted already
examples of errors in the combinations in section 6.3. Similarly
there will be instrument-related errors, such as pan-loading
errors in the mass-balance example, that limit the accuracy of
the measurements.

8. Conclusions

The combinatorial calibration method described and demon-
strated here is, in principle, applicable to any indicating
instrument that measures rational quantities and for which a
group of artefacts can be combined so that they maintain their
values. For direct-reading instruments only one of the artefacts
need be calibrated, so the technique provides the means to
simultaneously calibrate the instrument and the remaining arte-
facts (see section 3 for an example). For ratio-indicating
instruments the technique requires no calibrated artefacts yet
enables calibrations with uncertainties well below the uncer-
tainty in the values of the artefacts themselves (see section 5
for an example).

By subjecting the instrument to a large number of
measurements and a least-squares analysis, the technique
provides a good measure of the uncertainty associated with
the instrument’s readings over the whole of the calibration
range. Additionally, the presence or absence of patterns in the
dispersion of residual errors from the least-squares fit provides
a good indicator of the quality of the model equation used to
correct the readings of the instrument, and different models
can be trialled easily.

The artefacts must be able to be combined without
(significant) error. This appears to be the most limiting factor
in the application of the technique to some instruments. While
it is obvious how artefacts for extensive quantities such as
mass, optical flux and resistances might be combined, it seems
unlikely that suitable artefacts can be found for intensive
quantities such as pressure, density or temperature.

Combinatorial systems tend to be failsafe because of the
high degree of redundancy in the measurements. Small errors
in the combinations (e.g. pan-location errors, inter-element
reflections and resistor-heating effects, respectively, for the
three examples given) typically contribute to the measured
variance. If a fault occurs that causes the artefacts to combine
with unexpectedly large errors, then these errors will be
manifest as an unexpectedly large variance in the residuals of
the least-squares fit, and thereby alert the operator to a problem.

The artefacts (including the source for the detector-
linearity system) must be stable over the duration of the
experiments. This stability requirement is less demanding
than that for artefact standards, which may be required to be
calibrated and stable for periods as long as years.

The values of artefacts should be chosen so that the range
of combinations covers the operating range of the instrument.
Where the artefacts combine linearly, binary, trinary and
quaternary systems can generate a uniform sequence of artefact
combinations with the relatively few base artefacts.

Where indicating instruments use combinatorial systems
in their design (e.g. binary ADCs or decade inductive voltage
dividers) care must be taken to ensure that errors in the
instrument’s internal system are not confused with the values
of the artefacts used in the test system. Similar care may be
required, when using equally spaced combinations, to avoid
aliasing effects.

Where correction equations are fitted, the choice of the
correction equation is critical. Because the least-squares
algorithm will tend to bias parameter values to minimize the
dispersion of the residual errors, remnant systematic effects
may not be obviously apparent in graphs of residual errors. It
is usually necessary to trial several plausible equations based
on knowledge of the form of possible errors, and find the
equation that minimizes the variance of the residuals while at
the same time ensuring that all fitted parameters are statistically
significant (i.e. their values are greater than their uncertainties).
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