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Readings
• Press et al., Numerical Recipes, Chapter 15 (Modeling of Data) 
• Nocedal and Wright, Numerical Optimization, Chapter 10 

(Nonlinear Least-Squares Problems, pp. 250-273) 
• Shewchuk, J. R. An Introduction to the Conjugate Gradient 

Method Without the Agonizing Pain.
• Bathe and Wilson, Numerical Methods in Finite Element 

Analysis, pp.695-717 (sec. 8.1-8.2) and pp.979-987 (sec. 12.2)
• Golub and VanLoan, Matrix Computations. Chapters 4, 5, 10. 
• Nocedal and Wright, Numerical Optimization. Chapters 4 and 5.
• Triggs et al., Bundle Adjustment – A modern synthesis. 

Workshop on Vision Algorithms, 1999.
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Outline

Nonlinear Least Squares
• simple application (motivation)
• linear (approx.) solution and least squares
• normal equations and pseudo-inverse
• LDLT, QR, and SVD decompositions
• correct linearization and Jacobians
• iterative solution, Levenberg-Marquardt
• robust measurements
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Outline

Sparse matrix techniques
• simple application (structure from motion)
• sparse matrix storage (skyline)
• direct solution: LDLT with minimal fill-in
• larger application (surface/image fitting)
• iterative solution: gradient descent
• conjugate gradient
• preconditioning

Non-linear Least Squares
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Triangulation – a simple example

Problem:  Given some 
image points {(uj,vj)}
in correspondence across 
two or more images (taken from 
calibrated cameras cj), 
compute the 3D location X cj

X

(uj,vj)
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Image formation equations

u

(Xc,Yc,Zc)

ucf
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Simplified model
Let R=I (known rotation), 

f=1, Y = vj = 0 (flatland)

How do we solve this set 
of equations (constraints) 
to find the best (X,Z)? (xj,zj)

X

uj
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“Linearized” model
Bring the denominator over to 
the LHS

or

(Measures horizontal distance 
to each line equation.)
How do we solve this set of 
equations (constraints)?

(xj,zj)

X

uj
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Linear regression
Overconstrained set of linear 
equations

or
Jx = r

where
Jj0=1, Jj1 = -uj

is the Jacobian and
rj = xj-ujzj

is the residual

(xj,zj)

X

uj
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Normal Equations

How do we solve Jx = r?
Least squares: arg minx ║Jx-r║2

E =║Jx-r║2 = (Jx-r)T(Jx-r)
= xTJTJx – 2xTJTr – rTr

∂E/∂x = 2(JTJ)x – 2JTr = 0
(JTJ)x = JTr normal equations

A x = b ” (A is Hessian)
x = [(JTJ)-1JT]r pseudoinverse
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LDLT factorization

Factor A = LDLT, where L is lower triangular
with 1s on diagonal, D is diagonal

How?
L is formed from columns of Gaussian 
elimination

Perform (similar) forward and backward 
elimination/substitution
LDLTx = b, DLTx = L-1b, LTx = D-1L-1b,
x = L-TD-1L-1b
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LDLT factorization – details
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LDLT factorization – details
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LDLT factorization – details
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LDLT factorization – details
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LDLT factorization – details
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LDLT factorization – details
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LDLT factorization – details
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LDLT factorization – details
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LDLT factorization – details
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LDLT factorization – details
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LDLT factorization – details
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LDLT and Cholesky

Variant: Cholesky: A = GGT, where G = LD1/2

(involves scalar √)
Advantages: more stable than Gaussian 

elimination
Disadvantage: less stable than QR: (cond. #)2

Complexity: (m+n/3)n2 flops
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QR decomposition

Alternative solution for Jx = r
Find an orthogonal matrix Q s.t.

J = Q R, where R is upper triangular
Q R x = r
R x = QTr solve for x using back subst.

Q is usu. computed using Householder matrices, 
Q = Q1…Qm, Qj = I – βvjvj

T

Advantages: sensitivity ∝ condition number
Complexity: 2n2(m-n/3) flops
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SVD

Most stable way to solve system Jx = r.
J = UTΣ V, where U and V are orthogonal

Σ is diagonal (singular values)
Advantage: most stable (very ill conditioned 

problems)
Disadvantage: slowest (iterative solution)
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“Linearized” model – revisited

Does the “linearized” model

which measures horizontal 
distance to each line give the 
optimal estimate?

No! (xj,zj)

X

uj
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Properly weighted model
We want to minimize errors in the 
measured quantities

Closer cameras (smaller 
denominators) have more
weight / influence.
Weight each “linearized” equation 
by current denominator?

(xj,zj)

X

uj
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Optimal estimation

Feature measurement equations

Likelihood of (X,Z) given {ui,xj,zj}
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Non-linear least squares

Log likelihood of (x,z) given {ui,xj,zj}

How do we minimize E?
Non-linear regression (least squares), because 

ûi are non-linear functions of {ui,xj,zj}
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Levenberg-Marquardt

Iterative non-linear least squares
• Linearize measurement equations

• Substitute into log-likelihood equation:  
quadratic cost function in (∆x,∆z)
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Levenberg-Marquardt

Linear regression (sub-)problem:

with

ûi

Similar to weighted regression, but not quite.
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What if it doesn’t converge?
• Multiply diagonal by (1 + λ), increase λ

until it does
• Halve the step size (my favorite)
• Use line search
• Other trust region methods

[Nocedal & Wright]

Levenberg-Marquardt
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Other issues:
• Uncertainty analysis:  covariance Σ = A-1

• Is maximum likelihood the best idea?
• How to start in vicinity of global minimum?
• What about outliers?

Levenberg-Marquardt
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Robust regression

Data often have outliers (bad measurements)
• Use robust penalty applied

to each set of joint
measurements

[Black & Rangarajan, IJCV’96]
• For extremely bad data, use random sampling 

[RANSAC, Fischler & Bolles, CACM’81]

Sparse Matrix Techniques

Direct methods
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Structure from motion
Given many points in correspondence across 

several images, {(uij,vij)}, simultaneously
compute the 3D location Xi and camera (or 
motion) parameters (K, Rj, tj)

Two main variants: calibrated, and uncalibrated
(sometimes associated with Euclidean and 
projective reconstructions)
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Bundle Adjustment

Simultaneous adjustment of bundles of rays 
(photogrammetry)

What makes this non-linear minimization hard?
• many more parameters: potentially slow
• poorer conditioning (high correlation)
• potentially lots of outliers
• gauge (coordinate) freedom
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Simplified model
Again, R=I (known rotation), 

f=1, Z = vj = 0 (flatland)

This time, we have to solve 
for all of the parameters 
{(Xi,Zi), (xj,zj)}. (xj,zj)

Xi

uij
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Lots of parameters: sparsity

Only a few entries in Jacobian are non-zero
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Sparse LDLT / Cholesky

First used in finite element analysis [Bathe…]
Applied to SfM by [Szeliski & Kang 1994]

structure | motion fill-in
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Skyline storage [Bathe & Wilson]
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Sparse matrices–common shapes

Banded (tridiagonal), arrowhead, multi-banded

: fill-in

Computational complexity: O(n b2)
Application to computer vision:

• snakes (tri-diagonal)
• surface interpolation (multi-banded)
• deformable models (sparse)
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Sparse matrices – variable reordering

Triggs et al. – Bundle Adjustment

Sparse Matrix Techniques

Iterative methods
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Two-dimensional problems

Surface interpolation and Poisson blending
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Poisson blending
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Poisson blending

→ multi-banded (sparse) system
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One-dimensional example

Simplified 1-D height/slope interpolation

tri-diagonal system (generalized snakes)
4/30/2004 NLS and Sparse Matrix Techniques 50

Direct solution of 2D problems

Multi-banded Hessian

: fill-in

Computational complexity: n x m image
O(nm m2)

… too slow!
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Iterative techniques

Gauss-Seidel and Jacobi
Gradient descent
Conjugate gradient
Non-linear conjugate gradient
Preconditioning

… see Shewchuck’s TR
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Conjugate gradient

… see Shewchuck’s TR for rest of notes …
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Iterative vs. direct

Direct better for 1D problems and relatively 
sparse general structures

• SfM where #points >> #frames

Iterative better for 2D problems
• More amenable to parallel (GPU?) 

implementation
• Preconditioning helps a lot (next lecture)
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Monday’s lecture (Applications)

Preconditioning
• Hierarchical basis functions (wavelets)
• 2D applications:

interpolation, shape-from-shading,
HDR, Poisson blending,
others (rotoscoping?)
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Monday’s lecture (Applications)

Structure from motion
• Alternative parameterizations (object-

centered)
• Conditioning and linearization problems
• Ambiguities and uncertainties
• New research: map correlation


