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Readings

+ Press et al., Numerical Recipes, Chapter 15 (Modeling of Data)
» Nocedal and Wright, Numerical Optimization, Chapter 10
(Nonlinear Least-Squares Problems, pp. 250-273)

» Shewchuk, J. R. An Introduction to the Conjugate Gradient
Method Without the Agonizing Pain.

» Bathe and Wilson, Numerical Methods in Finite Element
Analysis, pp.695-717 (sec. 8.1-8.2) and pp.979-987 (sec. 12.2)

* Golub and VanLoan, Matrix Computations. Chapters 4, 5, 10.

* Nocedal and Wright, Numerical Optimization. Chapters 4 and 5.

« Triggs et al., Bundle Adjustment — A modern synthesis.
Workshop on Vision Algorithms, 1999.
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Nonlinear Least Squares

+ simple application (motivation)

+ linear (approx.) solution and least squares
* normal equations and pseudo-inverse

« LDLT, QR, and SVD decompositions

+ correct linearization and Jacobians

« iterative solution, Levenberg-Marquardt

* robust measurements
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Outline

Sparse matrix techniques

 simple application (structure from motion)
» sparse matrix storage (skyline)

« direct solution: LDLT with minimal fill-in

« larger application (surface/image fitting)

« iterative solution: gradient descent

* conjugate gradient

* preconditioning
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Non-linear Least Squares

Triangulation — a simple example

Problem: Given some

image points {(u;v;)}

in correspondence across

two or more images (taken from
calibrated cameras cj),
compute the 3D location X
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Image formation equations
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Simplified model

Let R=I (known rotation),
f=1, Y =v;=0 (flatland)

X — L]

Z — Z]‘

How do we solve this set
of equations (constraints)
to find the best (X,2)?
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“Linearized” model

Bring the denominator over to
the LHS

ui(Z —z5) =X —=x;
or
X —u;Z = zj — ujzy
(Measures horizontal distance
to each line equation.)

How do we solve this set of
equations (constraints)?
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Linear regression

Overconstrained set of linear
equations
X — UJ'Z == J}j - ’U,ij

or
X=r
where
Jio=1, 3y = -y;
is the Jacobian and
I = XUz
is the residual
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Normal Equations

How do we solve Jx =r?

Least squares: arg min, | Jz-r|
E=|Jdxrl|2 = xnTxr)

= XTJTIx — 2xTJTr — rTr
OE/ox = 2(JT)x — 2JTr = 0
JT)x =JTr normal equations
Ax=b ” (A'is Hessian)

X = [(JTI)JTr pseudoinverse
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LDLT factorization

Factor A = LDLT, where L is lower triangular
with 1s on diagonal, D is diagonal

How?

L is formed from columns of Gaussian
elimination

Perform (similar) forward and backward
elimination/substitution

LDL™ = b, DL™x = L-'b, LT™x = D-'L"'b,
x=LTD-L-'b
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LDLT factorization — details

8.2.1 Intreduction to Gauss Elimination
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LDLT factorization — details

Let us first consider the basic mathematical ope

in the following systematic steps:

quation in (8.2)
o K. This
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LDLT factorization — details

N 83
0 [ [
4/30/2004 NLS and Sparse Matrix Techniques 15

LDLT factorization — details

Using (8.5). we can now simply solve for the unknowns Ui, £y, Us, and U,
(=P, _ 12
U= L :
1 i, (e, 13 % &)
L T % (5.6
0 - (-4 n¥ - i &
¢ 5 5

e in the solution is therefore 1o subtract in step
multiples of equation i from equations i + 1§ + 2, .., n, where /
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LDLT factorization — details

8.2.2 The LDLT Solution

n Upy angular ¢
lated by a back-substitu

ts U can be
want to formalize the solution procedure using approp
tional important purpose of the discussion ks 1o introduce a
throughaut the following presentations. The actual compater imy
next section.
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LDLT factorization — details

is the final upper tris

ght superseript (i) indicates
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LDLT factorization — details

We now node that L is obtained by simply reversing the signs of the off-dingonal
ents in L. Therefore, we obtain
K= LL L8
1
1
L
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LDLT factorization — details
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LDLT factorization — details

LDLT factorization — details

4/30/2004 NLS and Sparse Matrix Techniques 22

4/30/2004 NLS and Sparse Matrix Techniques 21
LDLT factorization — details
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LDLT and Cholesky

Variant: Cholesky: A = GGT, where G = LD'”2
(involves scalar V)

Advantages: more stable than Gaussian
elimination

Disadvantage: less stable than QR: (cond. #)?
Complexity: (m+n/3)n2 flops
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QR decomposition

Alternative solution for Jx =r
Find an orthogonal matrix Q s.t.

J=QR, where R is upper triangular
QRx=r
Rx=QTr solve for x using back subst.

Q is usu. computed using Householder matrices,
Q=Q...Qp Q=1-Bvv

Advantages: sensitivity o« condition number

Complexity: 2n2(m-n/3) flops
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SVD

Most stable way to solve system Jx =r.

J=UTzV, where U and V are orthogonal
% is diagonal (singular values)

Advantage: most stable (very ill conditioned
problems)

Disadvantage: slowest (iterative solution)
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“Linearized” model — revisited

Does the “linearized” model
X —ujZ =5 — ujzj

which measures horizontal
distance to each line give the
optimal estimate?

No!
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Properly weighted model

We want to minimize errors in the
measured quantities

X - L]

Z — Z]‘

Closer cameras (smaller
denominators) have more

weight / influence.

Weight each “linearized” equation
by current denominator?

(3,2
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Optimal estimation

Feature measurement equations

u; = f(X,Z:xj,2))+nj = Gj+n;, n;~ N(0,07)

Likelihood of (X,Z) given {u;,x;z;}
L = JIplyld;)
J

— H ef(ujfﬁj)z/af-
J
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Non-linear least squares

Log likelihood of (x,z) given {u;x;z}
E=—logL= Z(uj = ﬁ])z/cr?

J
How do we minimize E?

Non-linear regression (least squares), because
0; are non-linear functions of {u;x;z}

4/30/2004 NLS and Sparse Matrix Techniques 30




Levenberg-Marquardt

Levenberg-Marquardt

Iterative non-linear least squares
» Linearize measurement equations

_ af; af;
O = f(X, Z; x5, 25) + G—)éAX + 6—Z]AZ+ a6q

+ Substitute into log-likelihood equation:
quadratic cost function in (Ax,Az)
o, of; af; .
2 . Y °lj o3
%:aj (@) —uj + JZAX + 22 02)
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Linear regression (sub-)problem:

with of: of
200 9y
I= " Gx ez X
— O’_2 (17 X—(Ej)/'ui
Z = zj Z -z
Ty = aiQ(Uj—ﬁj)

Similar to weighted regression, but not quite.
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Levenberg-Marquardt

Levenberg-Marquardt

What if it doesn’t converge?

» Multiply diagonal by (1 + A), increase A
until it does

» Halve the step size (my favorite)
* Use line search

+ Other trust region methods
[Nocedal & Wright]
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Other issues:

 Uncertainty analysis: covariance Z = A"

* Is maximum likelihood the best idea?

» How to start in vicinity of global minimum?
* What about outliers?
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Robust regression

Data often have outliers (bad measurements)

* Use robust penalty applied ' me=mmm—
to each set of joint : \ /
measurements : N

o7 — 2 N/

-0 ] 5 1

[Black & Rangarajan, IJCV’96]

» For extremely bad data, use random sampling
[RANSAC, Fischler & Bolles, CACM’81]
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Sparse Matrix Techniques

Direct methods




Structure from motion

Given many points in correspondence across
several images, {(u;,v;)}, simultaneously
compute the 3D location X; and camera (or
motion) parameters (K, R;, t))

iy = FKRjt5,%
,DZ']' = g(K~R7t7~Xl

Two main variants: calibrated, and uncalibrated
(sometimes associated with Euclidean and
projective reconstructions)
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Bundle Adjustment

Simultaneous adjustment of bundles of rays
(photogrammetry)

ﬁl] = f K“R]t]ﬂxl)

By = g(K, Ry, t5,%;

What makes this non-linear minimization hard?
* many more parameters: potentially slow
» poorer conditioning (high correlation)
« potentially lots of outliers
» gauge (coordinate) freedom
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Simplified model

Again, R=I (known rotation),
=1, Z = v; = 0 (flatland)

P e
Uiy = 7 )
i Zj
This time, we have to solve

for all of the parameters

{(X2), (vazj)}-
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Lots of parameters: sparsity

FE Ry, 5, x;)
g(KR]t]Xl)

Only a few entries in Jacobian are non-zero
oy 0uy  duy  Ouy
oK’ OR; oty oxy’

D .
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VR e
) ¥ nma
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Sparse LDLT / Cholesky

First used in finite element analysis [Bathe...]
Applied to SfM by [Szeliski & Kang 1994]
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Skyline storage [Bathe & Wilson]
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Sparse matrices—common shapes

Banded (tridiagonal), arrowhead, multi-banded

fill-in

Computational complexity: O(n b?)
Application to computer vision:
* snakes (tri-diagonal)
« surface interpolation (multi-banded)
» deformable models (sparse)
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Sparse matrices — variable reordering

Triggs et al. — Bundle Adjustment

Sarural Chobesky Misenan Degree Hoverse Catu-bickiee
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Sparse Matrix Techniques

Iterative methods

Two-dimensional problems

Surface interpolation and Poisson blending
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Poisson blending

wector fiehd ¥ wied in an extended version
hlem i 1) above:

"""J'IJIL" o with flagy = " lagy (&1

where dive = 2% 4 £ ). This is the

color inuecs: thiee

S+ 2 i the divengence o
fundamental machinery of Polsson editine
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Poisson blending

min [[ Vf- \'|: with flag = [ lag.
;Mo

E(f) = Zwij(fzj —gi))?
+5ij(Fip1y — Fij — R+t figr — fig — 02
— multi-banded (sparse) system
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One-dimensional example

Direct solution of 2D problems

Simplified 1-D height/slope interpolation

E(f) = Y wilfi — g:)? +vilfig1— fi — he)?
T
Aii = wit2v, A= -v
b = wigi +vi(hip1 — h)vi_1(h; — hi1)

tri-diagonal system (generalized snakes)
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Multi-banded Hessian

Computational complexity: n x m image
O(nm m2)
... too slow!
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Iterative techniques

Conjugate gradient

Gauss-Seidel and Jacobi
Gradient descent

Conjugate gradient
Non-linear conjugate gradient
Preconditioning

... see Shewchuck’'s TR
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An Introduction to
the Conjugate Gradient Method
Without the Agonizing Pain

Edition 1!

Jonathan Richard Shewchuk
August 4, 1994

... see Shewchuck’s TR for rest of notes ...
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Iterative vs. direct

Monday’s lecture (Applications)

Direct better for 1D problems and relatively
sparse general structures

+ SfM where #points >> #frames

Iterative better for 2D problems

* More amenable to parallel (GPU?)
implementation

» Preconditioning helps a lot (next lecture)
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Preconditioning
 Hierarchical basis functions (wavelets)

» 2D applications:
interpolation, shape-from-shading,
HDR, Poisson blending,
others (rotoscoping?)
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Monday’s lecture (Applications)

Structure from motion

+ Alternative parameterizations (object-
centered)

+ Conditioning and linearization problems
+ Ambiguities and uncertainties
* New research: map correlation
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