

CCD47-10 NIMO Back Illuminated Compact Pack High Performance CCD Sensor

e2v technologies

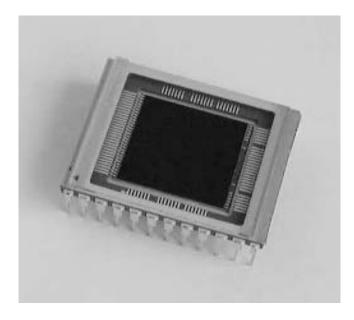
FEATURES

- 1024 by 1024 Nominal (1056 by 1027 Usable Pixels)
- Image Area 13.3 x 13.3 mm
- Back Illuminated Format
- Full-Frame Operation
- 13 μm Square Pixels
- Symmetrical Anti-static Gate Protection
- Very Low Noise Output Amplifiers
- Gated Dump Drain on Output Register
- 100% Active Area
- New Compact Footprint Package

APPLICATIONS

- Spectroscopy
- Scientific Imaging
- Star Tracking
- Medical Imaging

INTRODUCTION


This version of the CCD47 family of sensors has full-frame architecture. Back illumination technology, in combination with extremely low noise amplifiers make this device well suited to the most demanding scientific applications. To improve the sensitivity further, the CCD is manufactured without anti-blooming structures.

This device has a single serial output register. Separate charge detection circuits are incorporated at each end of the register, which is split so that a line of charge can be transferred to either output, or split between the two.

The register is provided with a drain and control gate along the outer edge of the channel for charge dump purposes.

Other variants of the CCD47-10 available are front illuminated format and inverted mode (MPP). In common with all e2v technologies CCD Sensors, the CCD47-10 is also available with a fibre-optic window or taper, or with a phosphor coating.

Designers are advised to consult e2v technologies should they be considering using CCD sensors in abnormal environments or if they require customised packaging.

TYPICAL PERFORMANCE

Maximum readout frequency				5	MHz
Output responsivity				4.5	$\mu V/e^-$
Peak signal				100	ke ⁻ /pixel
Dynamic range (at 20 kHz) .		∼ 5	0 (000:1	
Spectral range		200	-	1100	nm
Readout noise (at 20 kHz) .				2.0	e rms

GENERAL DATA

Format

Image area						13.3	x 13.3		m	nm
Active pixe	els (H)					10	56			
	(∨)					10	27			
Pixel size						13 x	13		μ	ım
Additional reference a	•				ii	mage	area	for	da	ark
Number of			 '							2
Weight (ap								·	•	q

Package

Package size						2	2.6	Χ	29.9	mm
Number of pins .										24
Inter-pin spacing									2.54	mm
Window material				quar	z o	r re	emo	Vá	able ç	glass
Туре					(cer	ami	С	DIL a	array

e2v technologies (uk) limited, Waterhouse Lane, Chelmsford, Essex CM1 2QU, UK Telephone: +44 (0)1245 493493 Facsimile: +44 (0)1245 492492 e-mail: enquiries@e2v.com Internet: www.e2v.com Holding Company: e2v technologies plc

PERFORMANCE

	Min	Typical	Max	
Peak charge storage (see note 1)	60k	120k	-	e ⁻ /pixel
Peak output voltage (no binning)	-	540	-	mV
Dark signal at 293 K (see notes 2 and 3)	-	20 000	40 000	e ⁻ /pixel/s
Dynamic range (see note 4)	-	50 000	-	
Charge transfer efficiency (see note 5): parallel serial	-	99.9999 99.9993		% %
Output amplifier responsivity (see note 3)	3.0	4.5	6.0	μV/e ⁻
Readout noise at 243 K (see notes 3 and 6)	-	2.0	4.0	rms e ⁻ /pixel
Maximum readout frequency (see note 7)	-	5.0	-	MHz
Dark signal non-uniformity at 293 K (std. deviation) (see notes 3 and 8)	-	1000	2000	e ⁻ /pixel/s
Response non-uniformity (std. deviation)	-	3	10	% of mean

Spectral Response at 243 K

		Minimum Response (QE)									
Wavelength (nm)	Enhanced Process UV Coated	Enhanced Process Broadband Coated	Basic Process Mid-band Coated	Basic Process Broadband Coated	Basic Process Uncoated	Maximum Response Non-uniformity (1σ)					
300	45	-	-	-	-	-	%				
350	45	50	15	25	10	5	%				
400	55	80	40	55	25	3	%				
500	60	80	85	75	55	3	%				
650	60	75	85	75	50	3	%				
900	30	30	30	30	30	5	%				

The uncoated process is suitable for soft X-ray and EUV applications.

ELECTRICAL INTERFACE CHARACTERISTICS

Electrode capacitances (measured at mid-clock level)

	Min	Typical	Max	
IØ/IØ interphase	-	1.5	-	nF
IØ/SS	-	5.0	-	nF
RØ/RØ interphase	-	40	-	pF
$R\emptyset/(SS+DG+OD)$	-	60	-	pF
ØR/SS	-	10	-	pF
Output impedance (at typ. operating condition)	-	300	-	Ω

NOTES

- 1. Signal level at which resolution begins to degrade.
- 2. Measured between 233 and 293 K and V_{SS} +9.5 V. Dark signal at any temperature T (kelvin) may be estimated from: $Q_d/Q_{d0}\,=\,122T^3e^{-6400/T}$

where Q_{d0} is the dark signal at T = 293 K (20 $^{\circ}$ C).

- 3. Test carried out at e2v technologies on all sensors.
- 4. Dynamic range is the ratio of full-well capacity to readout noise measured at 253 K and 20 kHz readout speed.
- 5. CCD characterisation measurements made using charge generated by X-ray photons of known energy.
- 6. Measured using a dual-slope integrator technique (i.e. correlated double sampling) with a 20 μs integration period.
- Readout at speeds in excess of 5 MHz into a 15 pF load can be achieved but performance to the parameters given cannot be guaranteed.
- 8. Measured between 233 and 253 K, excluding white defects.

BLEMISH SPECIFICATION

Traps Pixels where charge is temporarily held.

Traps are counted if they have a capacity

greater than 200 e⁻ at 243 K.

Slipped columns Are counted if they have an amplitude

greater than 200 e^- .

Black spots Are counted when they have a signal level

of less than 90% of the local mean at a signal level of approximately half full-well,

243 K.

rate 25 times the specified maximum dark signal generation rate (measured between 233 and 253 K). The typical temperature dependence of white spot defects is different from that of the average dark signal

and is given by:

 $Q_d/Q_{d0} = 122T^3e^{-6400/T}$

White column A column which contains at least 21 white

detects

Black column A column which contains at least 21 black

defects.

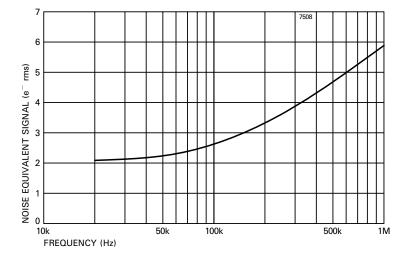
GRADE	0	1	2
Column defects: black or slipped	0	2	6
white	0	0	2
Black spots	50	100	200
Traps > 200 e-	2	5	12
White spots	50	80	100

Grade 5

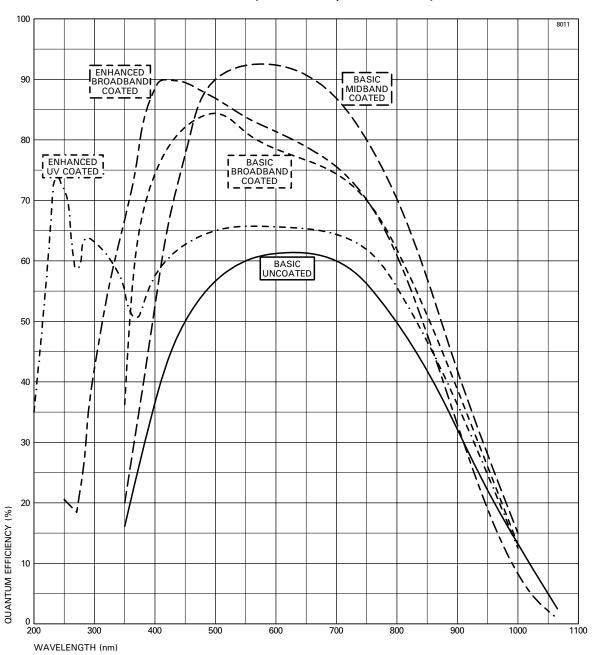
Devices which are fully functioning, with image quality below that of grade 2, and which may not meet all other performance parameters.

parameters

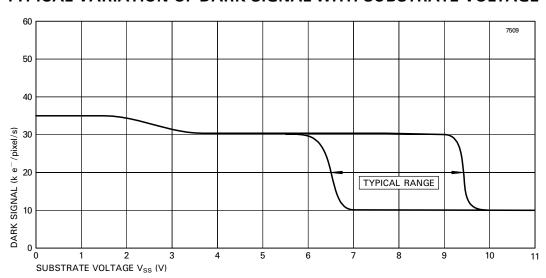
Minimum separation between

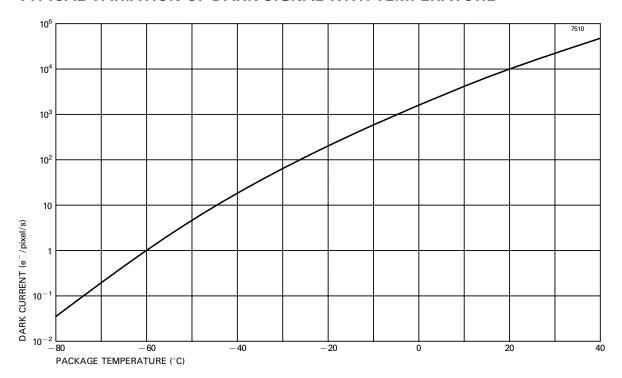

adjacent black columns 50 pixels

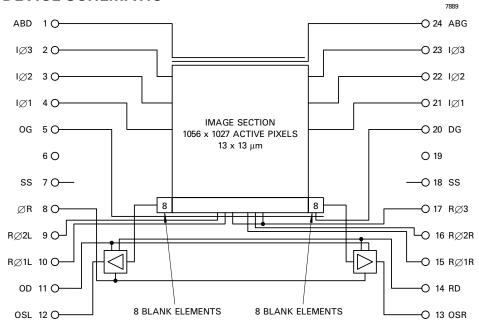
Note The effect of temperature on defects is that traps will be observed less at higher temperatures but more may appear below 233 K. The amplitude of white spots and columns will decrease rapidly with temperature.


TYPICAL OUTPUT CIRCUIT NOISE

(Measured using clamp and sample)


$$V_{SS} = 9.5 \text{ V} \quad V_{RD} = 17 \text{ V} \quad V_{OD} = 29 \text{ V}$$


TYPICAL SPECTRAL RESPONSE (At -20 °C, no window)


TYPICAL VARIATION OF DARK SIGNAL WITH SUBSTRATE VOLTAGE

TYPICAL VARIATION OF DARK SIGNAL WITH TEMPERATURE

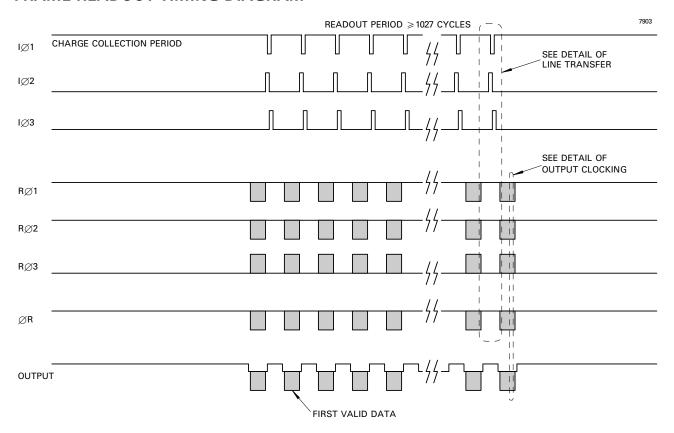
DEVICE SCHEMATIC

Note Pins 6 and 19 are not connected. For convenience, the CCD47-10 Compact Pack is pin compatible with the e2v technologies CCD57 sensors in the compact pack, except that OSL = pin 6, OSR = pin 19 and pins 12 and 13 are not connected in the CCD57.

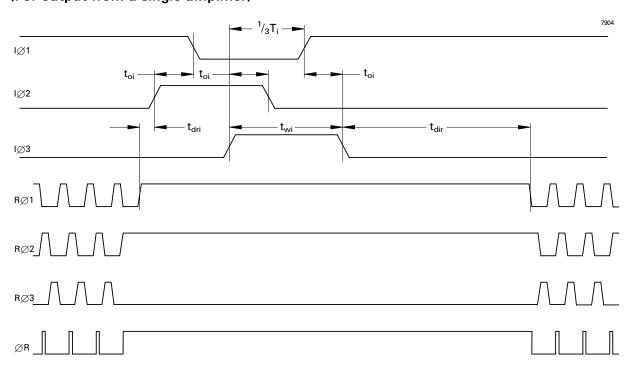
CONNECTIONS, TYPICAL VOLTAGES AND ABSOLUTE MAXIMUM RATINGS

				E AMPLITU		MAXIMUM RATINGS
PIN	REF	DESCRIPTION	Min	/EL (V) (See Typical	Max	with respect to V _{SS}
1	ABD	Anti-blooming drain (see note 10)		V _{OD}		-0.3 to +25 V
2	IØ3	Image area clock	8	12	15	<u>±</u> 20 V
3	IØ2	Image area clock	8	12	15	<u>+</u> 20 V
4	IØ1	Image area clock	8	12	15	±20 V
5	OG	Output gate	1	2	5	<u>+</u> 20 V
6	-	No connection		_		-
7	SS	Substrate	0	9	10	-
8	ØR	Output reset pulse (left and right amplifiers)	8	12	15	<u>+</u> 20 V
9	RØ2L	Output register clock (left section)	8	10	15	<u>+</u> 20 V
10	RØ1L	Output register clock (left section)	8	10	15	±20 V
11	OD	Output transistor drain (left and right amplifiers)	27	29	32	-0.3 to +35 V
12	OSL	Output transistor source (left amplifier)		see note 11		-0.3 to +25 V
13	OSR	Output transistor source (right amplifier)		see note 11		-0.3 to +25 V
14	RD	Reset transistor drain (left and right amplifiers)	15	17	19	-0.3 to +25 V
15	RØ1R	Output register clock (right section)	8	10	15	±20 V
16	RØ2R	Output register clock (right section)	8	10	15	<u>±</u> 20 V
17	RØ3	Output register clock (left and right sections)	8	10	15	±20 V
18	SS	Substrate	0	9	10	-
19	-	No connection		-		-
20	DG	Dump gate (see note 12)	-	0	-	<u>±</u> 20 V
21	IØ1	Image area clock	8	12	15	<u>±</u> 20 V
22	IØ2	Image area clock	8	12	15	<u>±</u> 20 V
23	IØ3	Image area clock	8	12	15	<u>+</u> 20 V
24	ABG	Anti-blooming gate	0	0	5	<u>±</u> 20 V

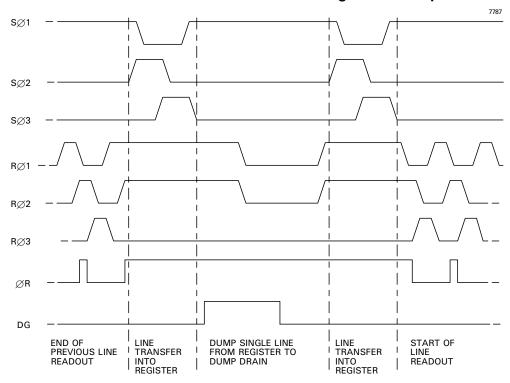
Maximum voltages between pairs of pins:

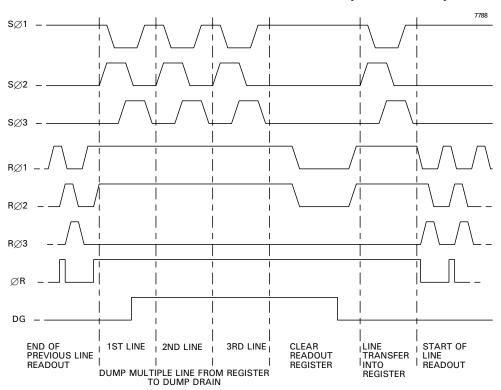

pin 12 (OSL) to pin 11 (OD) \pm 15 V pin 11 (OD) to pin 13 (OSR) \pm 15 V Maximum output transistor current 10 mA

NOTES

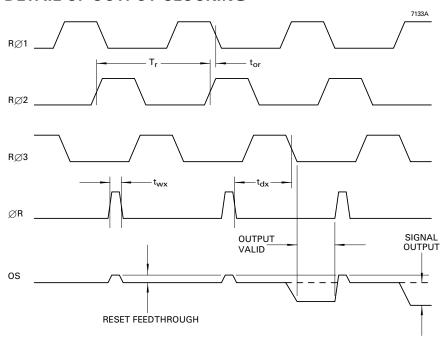

- 9. Readout register clock pulse low levels +1 V; other clock low levels 0 \pm 0.5 V.
- 10. Drain not incorporated, but bias is still necessary.
- 11. 3 to 5 V below OD. Connect to ground using a 3 to 5 mA current source or appropriate load resistor (typically 5 to 10 kΩ).
- 12. Non-charge dumping level shown. For operation in charge dumping mode, DG should be pulsed to 12 \pm 2 V.
- 13. All devices will operate at the typical values given. However, some adjustment within the minimum to maximum range may be required to optimise performance for critical applications. It should be noted that conditions for optimum performance may differ from device to device.
- 14. With the R \varnothing connections shown, the device will operate through the right-hand output only. In order to operate from both outputs R \varnothing 1(L) and R \varnothing 2(L) should be reversed.

100021, page 6 © e2v technologies

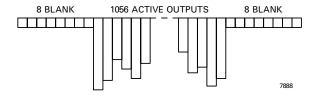

FRAME READOUT TIMING DIAGRAM


DETAIL OF LINE TRANSFER(For output from a single amplifier)

DETAIL OF VERTICAL LINE TRANSFER (Single line dump)



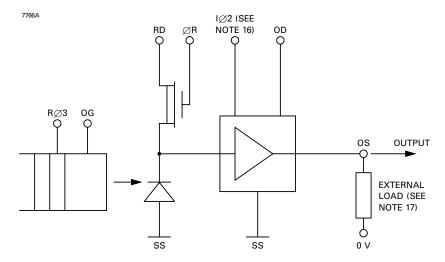
DETAIL OF VERTICAL LINE TRANSFER (Multiple line dump)



100021, page 8 © e2v technologies

DETAIL OF OUTPUT CLOCKING

LINE OUTPUT FORMAT

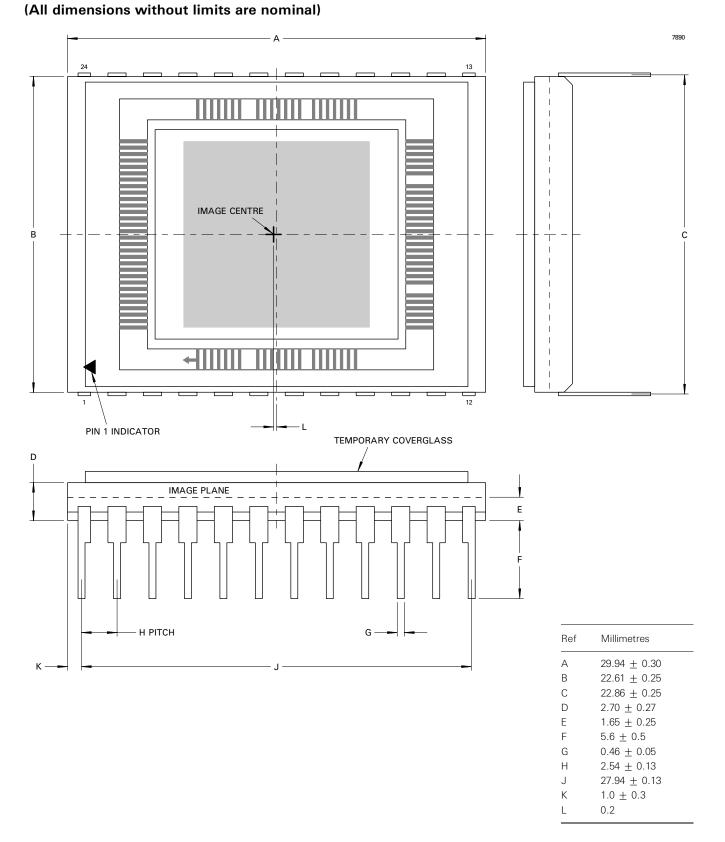

CLOCK TIMING REQUIREMENTS

Symbol	Description	Min	Typical	Max	
T _i	Image clock period	4	14	see note 15	μs
t _{wi}	Image clock pulse width	2	5	see note 15	μs
t _{ri}	Image clock pulse rise time (10 to 90%)	0.1	5	$T_i - 2t_{wi}$	μs
t _{fi}	Image clock pulse fall time (10 to 90%)	t _{ri}	t _{ri}	$T_i - 2t_{wi}$	μs
t _{oi}	Image clock pulse overlap	$(t_{ri} + t_{fi})/2$	0.6	$(3t_{wi} - T_i)/2$	μs
t _{dir}	Delay time, I∅ stop to R∅ start	1	2	see note 15	μs
t _{dri}	Delay time, R∅ stop to I∅ start	1	1	see note 15	μs
T _r	Output register clock cycle period	200	1000	see note 15	ns
t _{rr}	Clock pulse rise time (10 to 90%)	50	0.1T _r	0.3T _r	ns
t _{fr}	Clock pulse fall time (10 to 90%)	t _{rr}	0.1T _r	0.3T _r	ns
t _{or}	Clock pulse overlap	20	0.5t _{rr}	0.1T _r	ns
t _{wx}	Reset pulse width	30	0.1T _r	0.3T _r	ns
t _{rx} , t _{fx}	Reset pulse rise and fall times	0.2t _{wx}	0.5t _{rr}	0.1T _r	ns
t _{dx}	Delay time, ØR low to RØ3 low	30	0.5T _r	0.8T _r	ns

NOTES

15. No maximum other than that necessary to achieve an acceptable dark signal at the longer readout times.

OUTPUT CIRCUIT



NOTES

- 16. The amplifier has a DC restoration circuit which is internally activated whenever I Ø2 is high.
- 17. Not critical; can be a 3 to 5 mA constant current supply or an appropriate load resistor.

100021, page 10 © e2v technologies

OUTLINE

ORDERING INFORMATION

Options include:

- Temporary Quartz Window
- Permanent Quartz Window
- Temporary Glass Window
- Permanent Glass Window
- Fibre-optic Coupling
- UV Coating
- X-ray Phosphor Coating

For further information on the performance of these and other options, please contact e2v technologies.

HANDLING CCD SENSORS

CCD sensors, in common with most high performance MOS IC devices, are static sensitive. In certain cases a discharge of static electricity may destroy or irreversibly degrade the device. Accordingly, full antistatic handling precautions should be taken whenever using a CCD sensor or module. These include:

- Working at a fully grounded workbench
- Operator wearing a grounded wrist strap
- All receiving socket pins to be positively grounded
- Unattended CCDs should not be left out of their conducting foam or socket.

Evidence of incorrect handling will invalidate the warranty. All devices are provided with internal protection circuits to the gate electrodes (pins 2, 3, 4, 5, 8, 9, 10, 15, 16, 17, 20, 21, 22, 23, 24) but not to the other pins.

HIGH ENERGY RADIATION

Device characteristics will change when subject to ionising radiation.

Users planning to operate CCDs in high radiation environments are advised to contact e2v technologies.

TEMPERATURE LIMITS

	Min	Typical	Max					
Storage	73	-	373	Κ				
Operating	73	273	323	Κ				
Operation or storage in humid conditions may give rise to ice on								
the sensor surface on cooling, causing irreversible damage.								

Maximum device heating/cooling 5 K/min

Whilst e2v technologies has taken care to ensure the accuracy of the information contained herein it accepts no responsibility for the consequences of any use thereof and also reserves the right to change the specification of goods without notice. e2v technologies accepts no liability beyond that set out in its standard conditions of sale in respect of infringement of third party patents arising from the use of tubes or other devices in accordance with information contained herein.