HI-2019-01 (post-M265 BS03+RS04+Splitter01) Fiber Bending Experiment Results.

file: \data\2019\HI-2019-01\doc\HI-2019-01_Results(MF,rev1).pptx (rev: 29Jan2019,MF)

03-Jan-2019, after pot-M265 cals, BS03+RS04+Splitter01 were moved from tent to rm.124 at Pier35. 09 to 18-Jan-2019, 8 days of FO bending experiments = Exp. #01 to 46.

Fore-optics used were LuBot head + 20.5 ft of 600µm Fiber Optic w/ hydraulic hose from M264. The collector head + FO were coupled to specs at Trk06 during first 4 days, and Trk09 last 4 days. During MOBY265 deployment, Trk06 was LuTop, Trk09 was LuMid. Trk06 had a differently shaped BS spectral response than Trk09 – during M265 and during HI-2019-01. Light source during HI-2019-01 was NIST OL455-18U with PhotoDiode Monitor (no TEC on this PD mon).

Our intention was to test sensitivity to FO bending. We calibrated post-M265 BS/RS responsivities, but they did not compare well with in-water responses boot-strapped from MOS data (?). We also wanted to check the effect of tight FO coils seen in the TOP-200 commercial instrument Carol had at NIST in Dec-2018. And, during our 19-Dec-2018 telecon with Tasshi Dennis from NIST it was suggested that we could not expect to maintain stable calibrations before vs after bending fiber optics.

Stephanie's data processing + log sheets + photos are available under "H19-01-BS03/RS04" at http://data.moby.mlml.calstate.edu/mobyrefresh/timeseries/characterizations/inital_testing/inital_html

Summary of findings:

Net signals decreased when a loop was added to the FO between the specs and the Lu head. Net signal loss increased with decreasing diameter of a loop added to the FO.

Net signals returned to straight-FO levels after FO loops were removed (most of the time).

The lowest sensitivity to adding a FO loop was seen when there was a pair of tight (2.5 inch diameter = permanent) FO loops near the specs plus a tight 90° bend near the Lu head. A tight 360° loop near the Lu head was just as effective as a tight 90° bend near the Lu head.

Listing of Experiments performed during HI-2019-01:

	ay	<u>Exp#</u>	Description
I	10Jan	$\frac{1}{234}$	straight FO to <u>Track#06</u>
		2,3,4	remove & replace Lu head on stand at sphere output port
2	11Jan	5	straight FO
_		6,7	add 24in dia, 90° bend at head, then straight FO
		8,9	add 24in dia, 90° bend at head, then straight FO
3	12Jan	10	straight FO
		11	add 1x ~19in dia loop between specs & head
		12	2x ~18in dia loops between specs & head
		13,14	back to 1x ~19in dia loop, then straight FO
4	13Jan	15	straight FO
	#A	16	coil FO onto 14in dia plastic FO spool near specs (~4x loops)
		17	straight FO
	#B	18	1x 14in dia loop near specs
		19	add 1x 16in dia loop between specs & head
		20,21	remove 16in dia loop between specs & head, then straight FO
5	14Jan	22	straight FO to Track#09
	#A	23,24	add 24in dia 90° bend at head, then back to straight FO
	#B	25	add 1x 14in dia loop near specs
		26	add 1x 16in dia loop between specs & head
		27,28	remove 16in dia loop between specs & head, then straight FO
6	17Jan	29	straight FO
Ŭ	170411	30	1x 11in dia loop near specs
		31	add 1x 11in loop between specs & head
		32,33	remove 11in loop between specs & head, then straight FO
_			
7	18Jan	34	straight FO
	#A	35	2x 2.5in dia loops near specs = TIGHT & PERMANENT
		36	add 1x 11in dia loop between specs & head
		37	remove 11in dia loop between specs & head
	#B	38	1x 2.5in dia 90° bend at head = TIGHT
		39	add 1x 11in dia loop between specs & head
		40	remove 11in dia loop between specs & head
8	19Jan	41	straight FO – includes 2x tight loops at specs & tight bend at head
	#A	42	add 1x 11in dia loop between specs & head
		43	remove 11in dia loop between specs & head
	#B	44	make 2.5in 90° bend into 1x 2.5in loop at head = TIGHT & PERMANENT
		45	add 1x 11in dia loop between specs & head
		46	remove 11in dia loop between specs & head

Figure 1 shows fiber optic bend radius specifications from Ocean Optics, found at: <u>https://oceanoptics.com/product-category/bend-radius-and-mechanical/</u>

Note: for 600 μ m core size UV/VIS fiber - which we are using with MOBY refresh long term bend radius (LTBR) = 24 cm = 48 cm diameter or ~19 in dia., and **short term bend radius (STBR) = 12 cm = 24 cm diameter, or ~9.5 in dia.**, for "how tightly the fiber can be bent without being prone to microscopic fractures".

Bend Radius & Mechanical

Optical fiber works by guiding light down the fiber core due to variations in index of refraction between the core and cladding. A flexible buffer material in one or more layers is then applied to improve flexibility and protect the glass core/cladding. Even with this additional coating, there are still limits on how tightly the fiber can be bent without being prone to microscopic fractures that can lead to breaks.

- LTBR (long term bend radius): Observe as a minimum radius allowed for storage conditions.
- STBR (short term bend radius): Observe as a minimum radius allowed during use and handling.

0l	Fiber Core	Fiber	Cladding	Buffer	Buffer	Maximum	Onevetine	ITRE	(TDD
Band	Fiber Core Size	Types	Cladding Thickn ess	Buffer Material	Buffer Thickness	OD Maximum	Operating Temperature	LTBR	STBR
	50 ± 5 µm	VIS/NIR, UV/VIS	35 ± 0.5 μm	polyimide	17 ± 5 µm	155 µm	-65 to 300 °C	4 cm	2 cm
	100 ± 3 µm	VIS/NIR, UV/VIS	12 ± 5 µm	polyimide	17 ± 3 µm	155 µm	-65 to 300 °C	4 cm	2 cm
	200 ± 4 µm	VIS/NIR, UV/VIS, SR	10 ± 4 µm	polyimide	10 ± 5 µm	243 µm	-65 to 300 °C	8 cm	4 cm
	300 ± 6 µm	SR	15 ± 7 µm	polyimide	20 ± 10 µm	380 µm	-65 to 300 °C	12 cm	6 cm
	400 ± 8 µm	VIS/NIR, UV/VIS, SR	20 ± 3 µm	polyimide	20 ± 7 µm	487 µm	-65 to 300 °C	16 cm	8 cm
	500 ± 10 µm	VIS/NIR, UV/VIS	25 ± 3 µm	polyimide	20 ± 10 µm	600 µm	-65 to 300 °C	20 cm	10 cm
	600 ± 10 μm	VIS/NIR, UV/VIS, SR	30 ± 3 µm	polyimide	25 ± 10 μm	720 µm	-65 to 300 °C	24 cm	12 cm
	1000 ± 3 µm	VIS/NIR	50 ± 3 µm	acrylate	50 ± 40 µm	1120 µm	-50 to 85 °C	30 cm	15 cm
	1000 ± 20 µm	UV/VIS	25 ± 3 µm	acrylate	50 ± 40 µm	1065 µm	-50 to 85 °C	30 cm	15 cm

• VIS/NIR is multimode step index fiber with a low OH fused silica core and glass cladding (400 – 2100 nm)

• UV/VIS is multimode step index fiber with a high OH fused silica core and glass cladding (300 – 1100 nm)

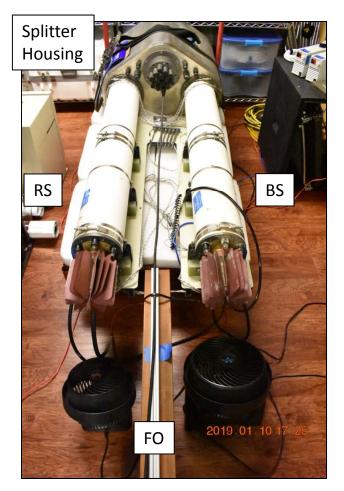
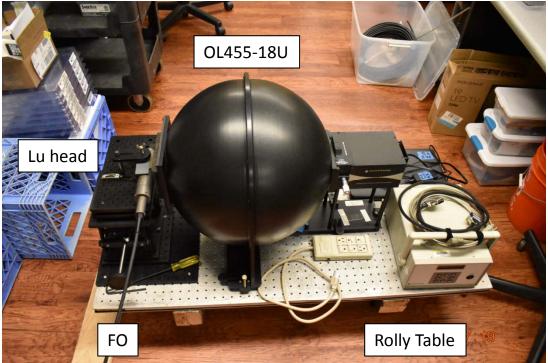
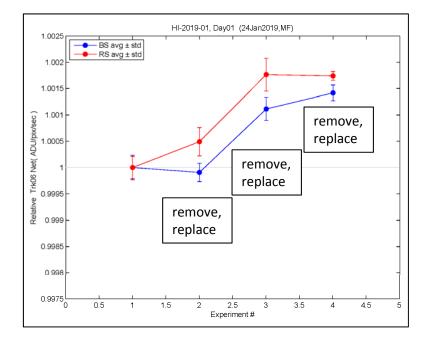

• SR is multimode step index fiber with a high OH fused silica core and glass cladding (200 – 1100 nm)

Figure 2 photos show the TOP-200 commercial instrument at NIST. The 90° bend is at the collectorhead end of the (1 mm ?) fiber optic, and the encased (assumed) loop(s) are at the instrument end of the FO.

Figure 2, TOP-200 Fiber Optic at NIST

Figure 2 photos show the equipment setup in room124 at Pier35, UHMC Hawaii.

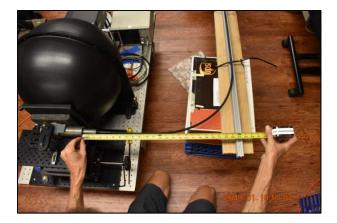



Figure 3, HI-2019-01 instrument setup.

Day01 checked the stability of the Lu head mount at the integrating sphere source.

Remove Lu head

Replace Lu head


Blue = BS03 data, Red = RS04 data. Net Signal data were average of 11 spectral pixels centered at pixel 512. Symbols: mean of N=4 scan sets; errorbars: \pm stDev of N=4 scan sets; then normalized to first mean shown. Data were not corrected for sphere PD monitor drift.

Over the ~45 min of these 4x experiments the PD output decreased ~0.3%. The Y-axis scale of this figure is \pm 0.25%. The upward drift of net signal over time was seen during most experiment days. The Blue and Red specs response roughly tracked each-other.

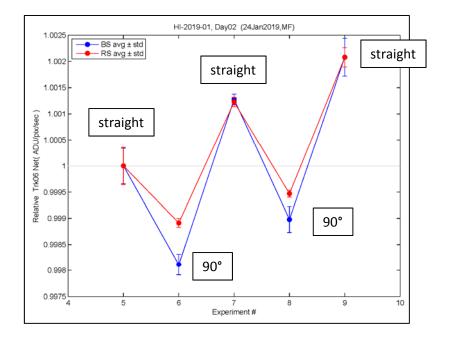
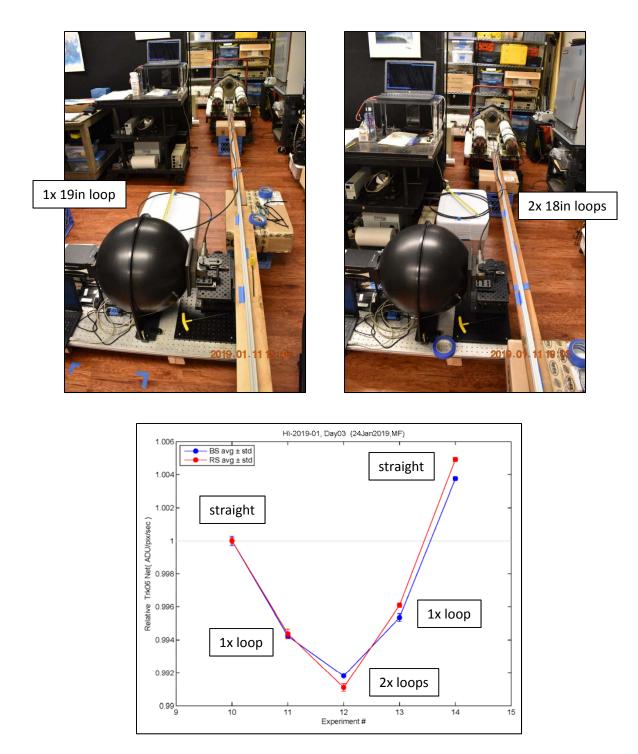

The Lu head + FO were coupled to Track#6 on the spectrographs for Day01 through Day04.

Figure 4, HI-2019-01 Day01 Results

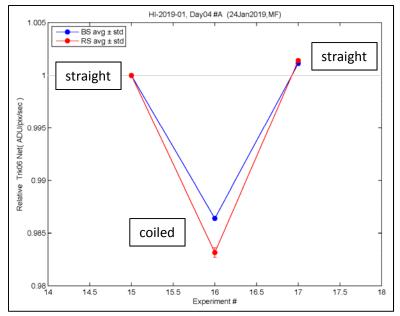
Day02 added and removed (two times) a large-ish ~24 in dia. 90° bend near the Lu head.


24 in dia 90° bend in FO near Lu head

The Y-axis scale of this figure is also $\pm 0.25\%$. Adding a soft 90° bend decreased the net signal, but only by ~0.15%. Net signal level via straight FO ~returned after removing the 90° bend (with a 0.25% signal drift over ~1 hr run time). The BS looked more sensitive than RS to a 90° bend.

Figure 5, HI-2019-01 Day02 Results

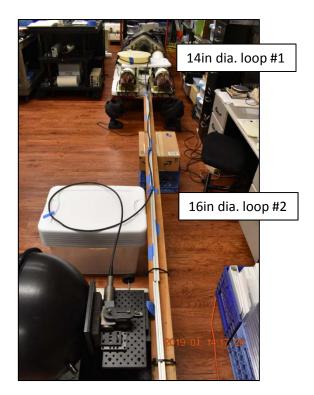
Day03 looked at the effect of adding large ~18 in dia loops between the specs and head.

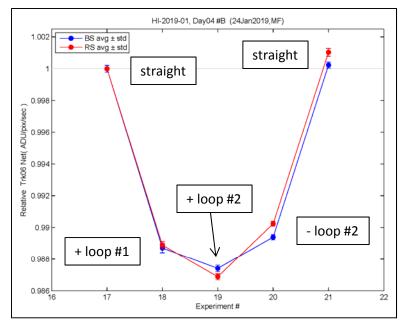


Adding one large loop decreased Net Signals ~0.6%, adding another loop decreased signals another 0.3%. Removing the 2^{nd} loop returned signals to 1x loop level, and removing both loops returned signal to starting straight-FO level (plus 0.4% signal drift over ~1 hr run time). BS & RS signal changes were of similar magnitude.

Figure 6, HI-2019-01 Day03 Results

We next looked at tighter FO loops. **Day04 part #A;** a 14 in dia. plastic FO spool was used to coil the whole FO. A spooled FO is how we envisioned handling the fore-optics with instrument off of a buoy.

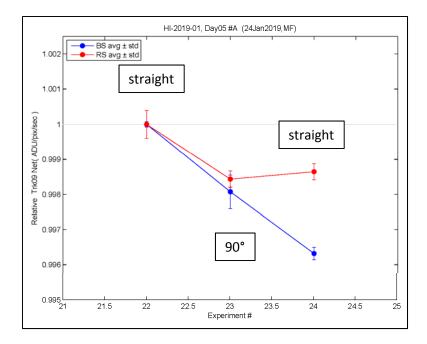




Coiling the FO on the spool decreased net signal ~1.5%, and uncoiling the FO returned signal to starting/straight level. Here, the RS seemed more sensitive to the coiled FO than did the BS.

Figure 7, HI-2019-01 Day04 part #A Results

Day04 part #B inserted 1x 14 in dia. loop near the specs, then added a 2^{nd} 16 in dia. loop between the specs and head - to test if a loop near the specs decreased sensitivity to additional bending.



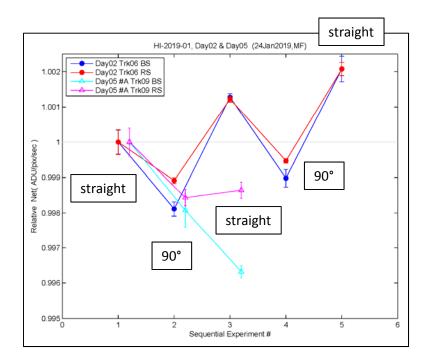
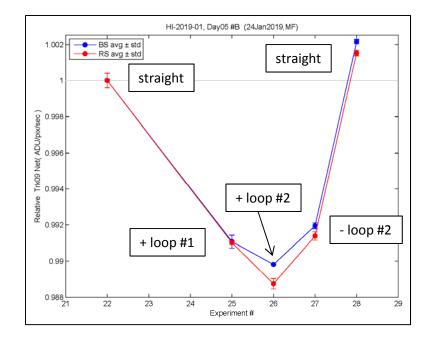

Adding 1x 14in loop near specs decreased net signals ~1.1% vs straight FO (i.e. slightly less loss than 4x loops in Day4 part #A). Adding loop #2 reduced signals another 0.17% - significantly less than loop #1's affect. Again, removing the loops returned signal levels. BS & RS responses were similar.

Figure 8, HI-2019-01 Day04 part #B Results

On Day05 the FO was moved from Trk06 to Trk09. **Day05 part #A** repeated the broad 24in dia. 90° bend near the Lu head – this time on Trk09.



This was the only sequence where removing a large FO bend did not return straight signal levels... An explanation for this has not yet been found...

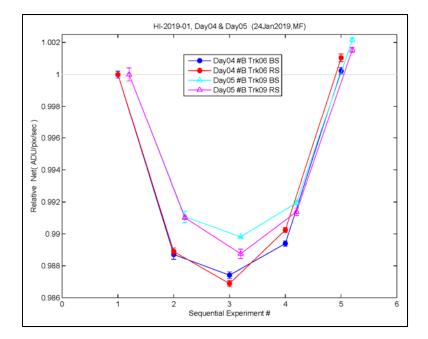
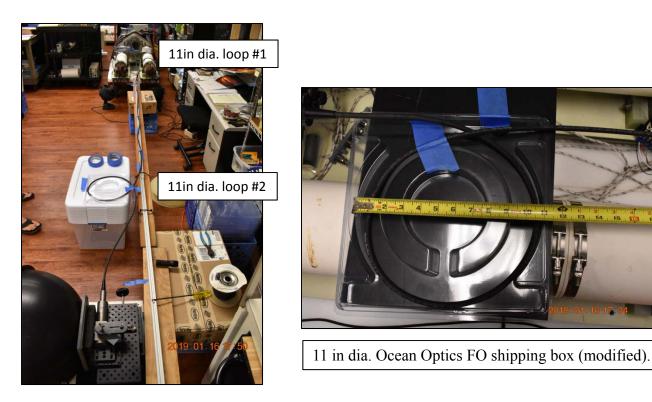
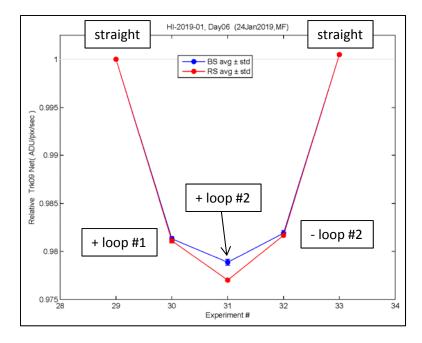

Above over-plots Trk06 & Trk09 90° bend results – Trk09 are open symbols. Signal decrease for the 90° bends are of similar magnitude. BS signal seem more sensitive than RS to a 90° bend.

Figure 9, HI-2019-01 Day05 part #A Results

Day05 part #B via Trk09 repeated Day04 part #B via Trk06 experiments.

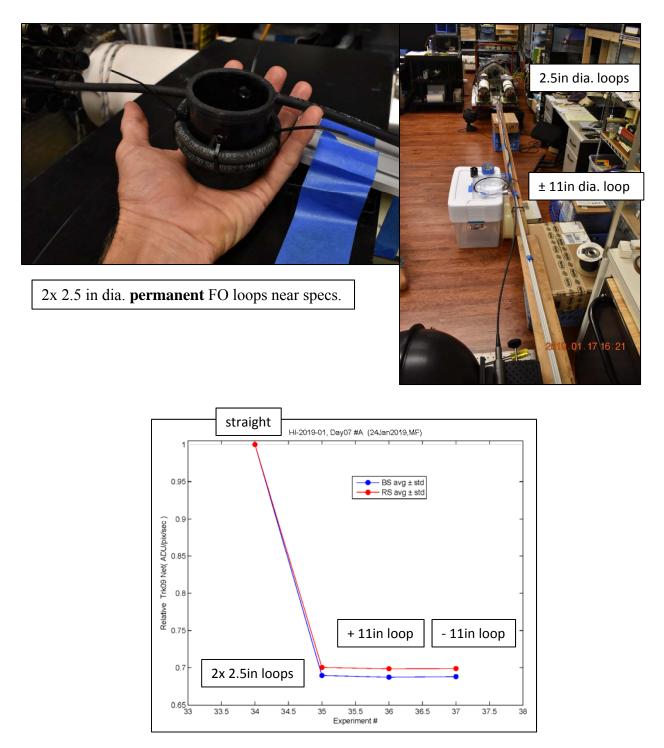

Since the return-to-straight-FO Exp#24 (see Fig.8 Top = Day05 #A, above) did not return starting signal, the starting signal from Exp#22 was used above for normalization.



Above overplots Trk06 & Trk09 2-loop results – Trk09 are open symbols. Signal decrease for the Trk09 loops are of smaller magnitude than for Trk06.

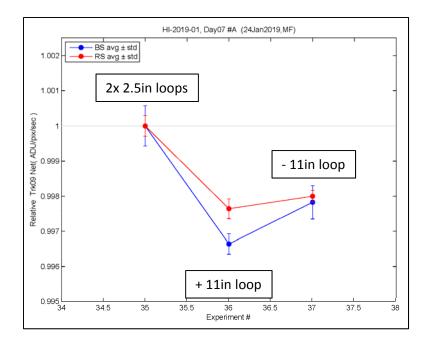
Figure 10, HI-2019-01 Day05 part #B Results

Day06 tightened the loops to 11in dia. – determined by an Ocean Optics FO shipping box form.



Adding an 11in loop near specs decreased net signals $\sim 1.9\%$ = more signal loss than larger loops. Adding 2nd 11in loop reduced signals another 0.23% at BS & 0.42% at RS- also more signal drop than larger 2nd loops. Ex. compare this with Fig.7 for Day04#B 14in loop near specs. RS seemed more sensitive to the 2nd loop than did the BS.

Figure 11, HI-2019-01 Day06 Results


Day07 part #A tested adding 2x 2.5 in dia. tight & permanent loops near specs.

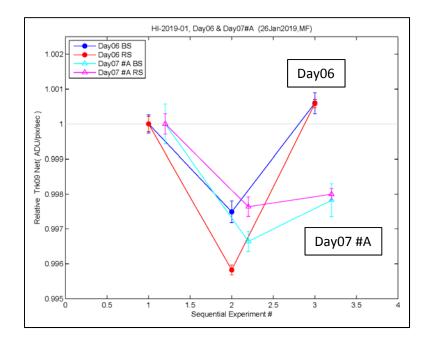
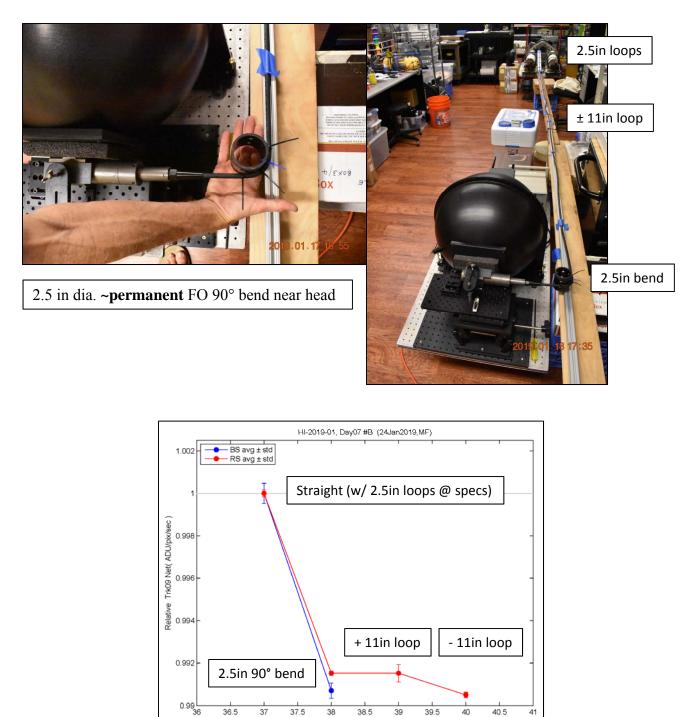

Adding 2x **tight & permanent** loops near the specs decreased the BS signal 31% and RS signal 30%. See next figure for zoomed-in plot showing effect of 11 in dia. loop between specs and Lu head.

Figure 12, HI-2019-01 Day07 part #A Results

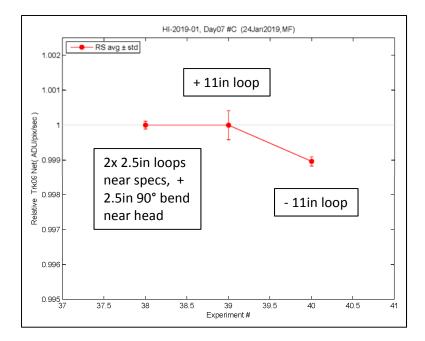
Day07 part #A cont. = sensitivity after adding 2x 2.5 in dia. tight & permanent loops near specs.


Above: adding an 11 in dia. loop - after inserting the 2x **tight & permanent** loops near the specs - decreased the signals $\sim 0.35\%$ at the BS and $\sim 0.25\%$ at the RS. Removing the 11 in loop increased signals $\sim 0.1\%$, but not to same levels as before 11 in loop was added. Here, the BS looked more sensitive than the RS to adding the 11 in dia. loop between specs & head.

Above compares Day06 vs Day07#A = add & remove 11in dia. loop between specs & head – where Day06 also had 11in loop near specs, vs Day7#A also had 2x tight loops near specs.

Figure 13, HI-2019-01 Day07 part #A Results, cont.

Day07 part #B tested adding 2.5 in dia. 90° **tight & ~permanent** bend near head.

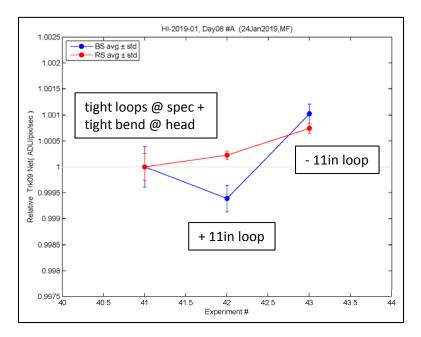


Adding a **tight & ~permanent** 90° bend in the FO near the head decreased the signals ~0.9%. However, the BS camera overheated at this time – we only got RS data via add/removing 11in loop... See next figure for zoomed-in plot showing effect on RS of 11 in dia. loop between specs and Lu head.

Experiment #

Figure 14, HI-2019-01 Day07 part #B Results

Day07 part #B cont. = sensitivity after adding 2.5 in dia. tight & ~permanent 90° bend near head.


Above: adding an 11 in dia. loop - after inserting the 2x **tight & permanent** loops near the specs and inserting **tight & ~permanent** 90° bend near head – did not change the signal at the RS. Removing the 11 in loop decreased the signal ~0.1%. BS data were missing here because the camera over-heated.

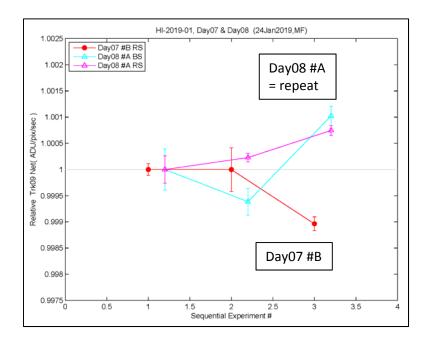
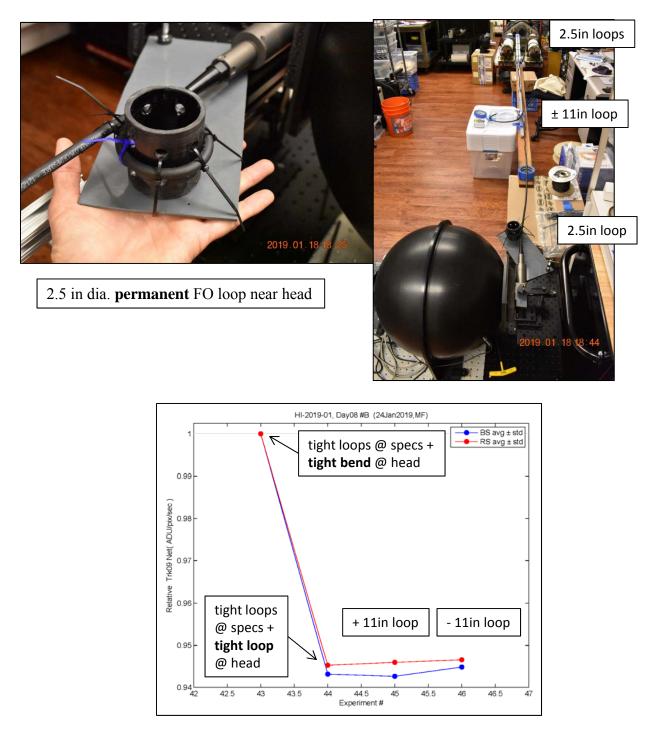
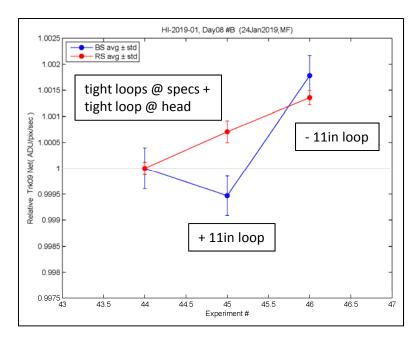

Above compares Day07 #A vs Day07 #B = add & remove 11in dia. loop between specs & head – where Day07 #A also had no tight bend @ head, vs Day7#B also had a tight bend @ head.

Figure 15, HI-2019-01 Day07 part #B Results, cont.

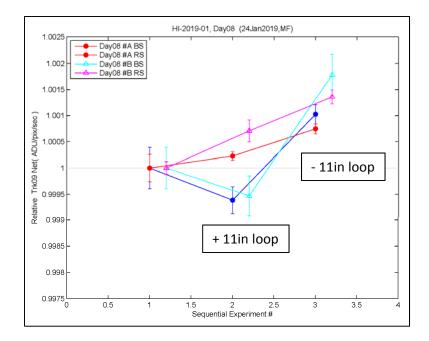
Day08 part #A = repeat Day07 #B with both BS & RS collecting data.


Above: adding an 11 in dia. loop - after inserting the 2x **tight & permanent** loops near specs and inserting **tight & ~permanent** 90° bend near head - decreased the signal 0.06% at the BS and increased signal 0.02% at the RS. Removing the 11in loop increased signals ~0.1% above level before 11in loop was added.

Above compares Day07 #B vs Day08#A = add & remove 11in dia. loop between specs & head – open symbols are Day08, both Days had 2x tight loops at specs + tight bend at head.

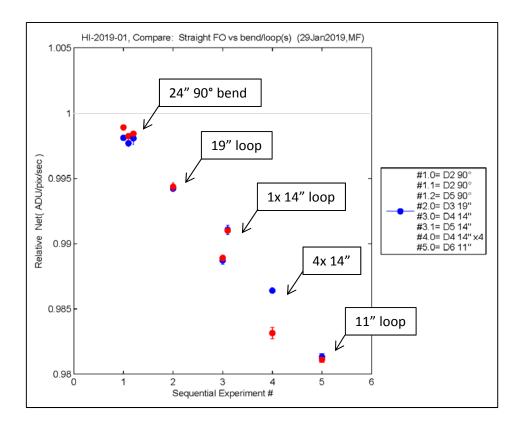

Figure 16, HI-2019-01 Day08 part #A Results

Day08 part #B replaced tight 90° bend with a **tight & permanent** 360° loop near head ...because a tight loop would be easier to tuck into a MOBY arm than a tight right-angle bend...

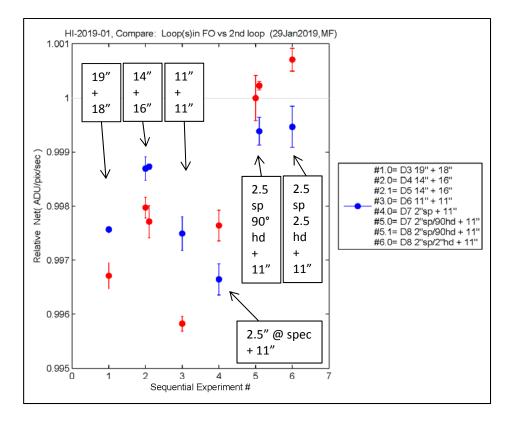


Making the tight 90° bend at head into a **tight & permanent** loop at head decreased the signals 5.7% at BS and 5.5% at RS. See next figure for zoomed-in plot showing effect of add/removing an 11 in dia. loop between specs and Lu head ... with tight loops at specs and tight loop at head.

Day08 part #B = add/remove 11 in dia. loop, with tight loops at specs & tight loop at head.



Above: adding an 11 in dia. loop - including the 2x **tight & permanent** loops near specs and **tight & permanent** loop near head - decreased the signal 0.05% at the BS and increased signal 0.07% at the RS. Removing the 11in loop increased signals ~0.15% above level before 11in loop was added.



Above compares Day08 #A vs Day08 #B = add & remove 11 in dia. loop between specs & head – where #A had tight bend at head and #B had tight loop at head. Similar results for both.

Figure 18, HI-2019-01 Day08 part #B Results, cont.

Above: all experiments, straight FO vs adding 1 (or more) FO bend or loop(s)

Above: all experiments, loop(s)/bend in FO vs adding 1 more FO loop

Figure 19, HI-2019-01 comparisons of results