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To enable traceability of imaging spectrometer data, the associated measurement uncertainties
have to be provided reliably. Here a new tool for a Monte-Carlo-type measurement uncertainty
propagation for the uncertainties that originate from the spectrometer itself is described. For this,
an instrument model of the imaging spectrometer ROSIS is used. Combined uncertainties are then
derived for radiometrically and spectrally calibrated data using a synthetic at-sensor radiance spec-
trum as input. By coupling this new software tool with an inverse modeling program, the measure-
ment uncertainties are propagated for an exemplary water data product. © 2012 Optical Society of
America
OCIS codes: 120.0280, 120.3940, 280.4788.

1. Introduction

The goal of this paper is to present the use of Monte
Carlo analysis for the propagation of measurement
uncertainties of radiometrically and spectrally cali-
brated imaging spectrometer data as well as their
impact on retrieved model parameters of an exemp-
lary application. The indication of measurement un-
certainties for scientifically used data is necessary to
allow for an estimation the uncertainty of subse-
quent analyses of the taken data and to enable com-
parability of data between different sensors. This
method was implemented into a software tool called
PyROSIS.

The need for the indication of measurement uncer-
tainties has been recognized by the hyperspectral re-
mote sensing community [1]. Therefore, traceability
to the Systeme International units of the spectral ra-
diance data recorded by imaging spectroradiometers
is increasingly a requirement, e.g., [2].

According to metrological guidelines [3], propa-
gation of measurement uncertainties should be
performed numerically using a Monte Carlo method
(MCM) if an analytical error propagation is not fea-
sible. This is the case for imaging spectrometer data,
since, for example, radiometric uncertainties intro-
duced through spectral uncertainties cannot be de-
termined analytically, as they depend on the object
spectra [4]. Also, some data processing procedures
performed to process raw data [Level 0 (L0) data]
to radiometrically and spectrally calibrated data
[Level 1 (L1) data] cannot be modeled for an analy-
tical error propagation, such as geometric or spectral
resampling or stray light correction.

Since the uncertainties depend on the instrument,
this simulation is based on the implementation of a
specific sensor. For this study, Deutsches Zentrum
für Luft- und Raumfahrt’s (DLR’s) imaging spectro-
meter ROSIS was chosen, as laboratory and airborne
characterization data were readily available. These
data are used for the calibration as well as for the
generation of the sensor model for the simulation.
Also, the L1-calibration software, which needs to
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be included in the Monte Carlo simulation, was
available.

The input spectra that are used to generate at-
sensor radiances in this simulation are synthetic: a
water reflectance spectrum was generated and pro-
pagated through the atmosphere to simulate at-
sensor radiances across the field of view. The water
reflectance was generated by the software WASI [5].

By coupling PyROSIS with WASI into one work-
flow, the L1 data that are generated in this simula-
tion can be used to estimate the instrument’s
influence on the uncertainties of the retrieved pa-
rameters of the radiative transfer model. This is
shown here exemplarily for the determination of sus-
pended matter concentration by inverse modeling
using WASI.

The focus of this paper is on radiometric and spec-
tral uncertainties; uncertainties introduced via geo-
metric properties such as finite line spread functions
(i.e., imaging of multiple objects within one pixel) or
movement smearing are not considered here. These
are studied in more detail in, e.g., [6]. Hence, the
simulated scene used for this study is chosen to be
homogeneous. Also, the uncertainties introduced
through atmospheric and geometric correction are
not included in this analysis, as this also was studied
previously, for instance in [1,7].

This paper is organized as follows. Section 2 gives a
brief recapitulation of how Monte Carlo analyses
are used to determine measurement uncertainties,
Section 3 presents the implementation of such an
analysis into software, and Section 4 introduces the
instrument model used in this study. Results ob-
tained with the Monte Carlo analysis are presented
in Section 5 and commented on in Section 6.

2. Determination of Measurement Uncertainties
via the MCM

To describe the measurement uncertainties, a prob-
ability density function (PDF) or a probability distri-
bution is assigned to each sensor and model
parameter (see Section 4). After that, an MCM ana-
lysis is performed as follows.

• Select the numberN of hyperspectral frames to
be simulated.
• For each run of the simulation, i.e., each frame,

draw a random value from each parameter’s PDF
and perform a forward calculation with those values
to simulate the data acquisition process, the calibra-
tion, and subsequent processing steps.
• Repeat this N times to build the PDFs of the

at-sensor radiance.
• Determine the shortest 95% coverage intervals.

The shortest 95% coverage interval is the smallest
interval that contains 95% of the radiance values of a
detector element. Reference [3] recommends the use
of shortest coverage intervals in case of potentially
asymmetric and a priori unknown PDFs of the re-
sults. For a Gaussian PDF, this corresponds to a cov-
erage factor of k � 2, meaning 2 standard deviations.

Each run of the simulation by PyROSIS consists of
the following steps.

• Simulate the image acquisition process using
the instrument model for a given remote sensing
reflectance spectrum at a well-defined viewing and
illumination geometry and atmospheric conditions.
This corresponds to the creation of a synthetic
hyperspectral frame, which includes all spectral in-
formation of one image line, i.e., all the information
collected by the instrument during one sampling; the
units of the data being digital numbers (DNs).
• Perform L0 to L1 calibration. The data are now

in the units of spectral radiances.
• Correct for atmosphere and illumination. The

data now have the units of normalized water leaving
remote sensing reflectance.
• Further analysis of the reflectance data

through inverse modeling using WASI.

The hyperspectral frame is defined here as one im-
age row of the hyperspectral cube, i.e., one spectrum
for each geometric pixel.

3. Implementation of the Method

A. Work Flow

The first step is to create a hyperspectral frame, i.e.,
one spectrum for each geometric pixel using a simu-
lated at-sensor radiance spectrum. This corresponds
to the imaging of a completely homogeneous scene
during a flight.

The second step consists in the calibration of this
frame, so that one ends up with radiance spectra.

The calibrated spectra are atmospherically cor-
rected and finally handed over to WASI to retrieve
the suspended matter concentration, CL.

B. Generation of Synthetic Imaging Spectrometer Frame

In the following, the generation of an imaging spec-
trometer frame is described. Some of the processing
steps are explained in more detail in Subsection 3.C.

First, an at-sensor radiance spectrum L is calcu-
lated as follows:

L�λ� � RRS�λ� · Tatm�λ� · E0�λ� · Twindow�λ� � Lpath�λ�:
(1)

In this equation, RRS denotes the water remote
sensing reflectance, Tatm an atmospheric transmis-
sion generated with MODTRAN [8], E0 the extrater-
restrial solar irradiance [9], Twindow the transmission
of the airplane window, and Lpath the path radiance.
All input spectra have a higher resolution
(Δλ ≈ 1 nm) than the simulated instrument (for
ROSIS, Δλ ≈ 6 nm). Tatm is the product of the atmo-
spheric transmission of the downwelling irradiance
reaching the surface Tdown

atm and the atmospheric
transmission of the upwelling radiance between
water surface and sensor Tup

atm.
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In the following, S denotes a sensor signal in the
units of DN. The index i denotes spectral channels,
the index j denotes geometric pixels. For the sake
of readability, some equations take the form of ma-
trix equations, where variables that are subscripted
with only one index are to be understood as a vector;
i.e., Sj is a vector containing the spectral information
recorded by the geometric pixel number j. Matrices
are in bold typeface.

For each geometric pixel, the radiance impinging
each channel is then calculated by integrating
the product of the spectral response function (SRF)
SRF�λ� with the at-sensor radiance spectrum, thus
yielding a radiance spectrum LLR with lower
resolution:

LLR;i;j �
Z

SRF�λ�i;j · L�λ�dλ: (2)

The center wavelengths of the detector element’s
SRF are calculated according to Section 4. An error
due to polarization sensitivity is introduced
multiplicatively:

LLR;Pol;i;j � LLR;i;j�1� P ·U�ϕ; i��; (3)

P � 30% being a typical degree of polarization due to
the reflection on water and U being the probability
distribution described in Eq. (14).

Subsequently, the photoresponse nonuniformity
(PRNU) is introduced. This is done by multiplying
the signal of each detector element with the inverse
of its PRNU correction factor, UPRNU.

Then, the radiances are converted into DN:

Si;j � LLR;Pol;i;j · ri;j · texposure; (4)

where the radiometric response coefficients are com-
puted according to the following equation:

rj �
1

LIS · texposure
·M ·

�
SIS;j

UPRNU;j
− Ssmear;j

�
. (5)

The radiometric response coefficients ri;j depend on
wavelength and pixel number. SIS is the signal mea-
sured by the sensor of an integrating sphere, LIS is
the spectral radiance of that sphere, and texposure is
the exposure time. The signal is corrected for PRNU
(UPRNU), smear (Ssmear), stray light using the current
stray light distribution, M, and smile via resampling
to the reference wavelengths. A stray light distribu-
tion matrix M is generated for each run using
Eq. (11).

The effects taken into account for the calculation of
r have to be applied to S as well to simulate L0 data:
spectral stray light is added by multiplying each pix-
els’ spectrum with the inverse of the correction ma-
trix. Readout smearing is added using Eq. (15). The
dark current signal as well as its associated uncer-
tainty are then added to the signal. The radiometric

noise is generated using Eq. (12) and added. Detector
saturation is introduced by setting signals above the
detectors’ maximal signal level to its maximal signal
level. Finally, quantization errors are introduced to
the data by rounding the signals to the next integer
number. A more detailed description of these effects
is given in Section 4.

C. L1 Calibration

The L1 calibration for synthetic data uses the same
procedure as the regular L1 calibration process, the
difference being that calibration errors are added
here. The calibration steps performed are, in the
same order as presented here, starting with the sig-
nals S generated according to Subsection 3.B:

The dark current is subtracted. Then, the PRNU is
corrected by multiplying the signal of each detector
element with its individual PRNU correction factor.
The signal due to smearing is corrected for by calcu-
lating it with Eq. (15) and subtracting it from the sig-
nal. The stray light signals are removed according to
Section 4. To correct for the spectral misregistration
due to smile, all spectra are resampled to a single,
defined set of center wavelengths using cubic spline
interpolation. Finally, the resulting signal of each de-
tector element S0

i;j is multiplied with the detector ele-
ment’s radiometric response

Li;j �
S0
i;j

ri;j · texposure
; (6)

so that the data are now radiometrically calibrated
and in the units of spectral radiance.

D. Level 2 Processing

To allow further analyses, the L1 calibrated data
have to be processed to Level 2; i.e., the spectral ra-
diance has to be atmospherically corrected so that
the at-sensor radiances are converted into ground re-
flectances. As the atmospheric contribution is com-
pletely known in these simulations, this is an
idealized correction. This is done via

RRS � L�λ� − Lpath;LR�λ�
E0;LR�λ� · Tatm;LR�λ� · Twindow;LR�λ�

; (7)

where the denominator, the combined spectrum of
the Sun, the atmosphere, and the aircraft window
transmission as well as the path radiance are re-
sampled to the lower resolution of ROSIS, as indi-
cated by the subscript “LR.”

E. Generation of Level 3 Data

The “Water Colour Simulator”WASI [5] is a software
tool that, in its forward mode, is capable of the cal-
culation of optical water spectra based on physical
models. In its inverse mode, WASI allows for the in-
version of water spectra for the retrieval of water
model parameters.

WASI was used in its forward more to generate the
remote sensing reflectance spectrum used for the
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simulation. Therefore, all input parameters for the
generation of this spectrumare known. For this study,
only the suspended matter concentration CL was
retrieved. Since this is done for each simulated
spectrum of each simulated sensor frame, a combined
measurement uncertainty can be determined for the
retrieval ofCL by again using the shortest 95% cover-
age interval for all the resulting values ofCL as amea-
sure for the uncertainty.

F. Software Tool PyROSIS

The L1 calibration software and the Monte Carlo si-
mulation tool were implemented in Python, using the
NumPy and SciPy libraries.

The sensor model description is based on text files,
so the implementation of other instruments should
be relatively simple. On an Intel i5 notebook proces-
sor with 2.67 GHz, the calculation of a single frame
on one core takes about 30 s. Since the task is easily
parallelized, the software can make use of multiple
processor cores.

4. ROSIS Sensor Model

The term “sensor model” is used here in the sense
that it is a mathematical description of an imaging
spectrometer. All values given here are derived from
the available, although partly unpublished, data and
are based on laboratory and airborne measurements.
As the scope of this publication does not encompass
the actual characterization of ROSIS, the derivation
of those values is not described here in more detail.

ROSIS [10,11] is a grating-based imaging spectro-
meter that has been used in three different config-
urations since 1991. The current configuration,
ROSIS 3, has 512 geometric pixels, 115 spectral
channels, 103 of which are usable for airborne mea-
surements, and a radiometric resolution of 14 bits.
The remaining 12 channels are blocked by an optical
filter. ROSIS covers the wavelength range from 430
to 836 nm. Table 1 provides an overview of the sensor
parameters and their uncertainties, which are used
to model the measurement uncertainties of ROSIS.

The following are parameters of the sensor model.

SRFs. The SRF of a ROSIS channel is Gaussian in
shape, with a FWHM of λFWHM � 6 nm and an uncer-
tainty of ΔλFWHM � 0.1 nm. The spectral sampling
interval (SSI) between two adjacent channels is
λSSI � 4 nm, with an uncertainty ofΔλSSI � 0.01 nm.
The central wavelength λc;i of a channel i has a sta-
bility of Δλc � 0.2 nm during a flight strip. All three
uncertainties are modeled with Gaussian PDFs.

The spectral smile effect is also taken into account
by introducing a pixel-number-dependent spectral
shift to all λc of each geometric pixel. The introduced
shifts are up to 1.5 nm and follow a parabolic func-
tion. The uncertainty of the smile shift is set to be
zero, since the smile can be accurately measured
in the laboratory and the remaining uncertainty
corresponds to the uncertainty in center wavelength
position.

The center wavelengths are computed as follows:

λc;i;j � 380 nm� λSSI · i − λsmile;j; (8)

with the smile shift relative to pixel j � 0 being para-
metrized as

λsmile;j � �−9.52 · 10−6j2 � 6.48 · 10−3j� nm: (9)

Spectral stray light. Spectral stray light can be un-
derstood as optical cross talk: Detector elements
“see” light of wavelengths that should impinge on
other spectral channels. A spectral stray light correc-
tion algorithm is described in [12], and the corre-
sponding measurements are described in [13]. The
stray light distribution can be condensed into a ma-
trix M, such that the equation

Smeas;j � M · Sin;j (10)

holds. Sin is a vector with the spectrum that would be
recorded without stray light influence, while the vec-
tor Smeas is the spectrum actually recorded by the
pixel j of the instrument. The same matrix is applied
to all geometric pixels. This approach only accounts
for stray light that has its origin in the covered
wavelength interval; stray light that originates from
outside this interval is neglected.

The stray light matrix is generated from a parame-
trization of the stray light in ROSIS:

Mk;k0 �
a

b�k − k0�2 � 1
� c

d�k − k0�4 � 1
� h; (11)

with a � 8.43 · 10−4, b � 9.83 · 10−4, c � −2.56 · 10−4,
d � −5.58 · 10−4, and h � 7.56 · 10−5. k denotes the
channel that receives stray light from the channel
k0. The PDF for each parameter is chosen to be Gaus-
sian in shape, with a width of 5%.
Radiometric response. ROSIS’ calibration stan-
dard is an integrating sphere calibrated at the
German National Metrology Institute (PTB). In the

Table 1. ROSIS Sensor Parameters Used for MCM with Their
Associated Uncertaintiesa

Parameter Mean Value Uncertainty PDF

Center wavelength see Eq. 8 0.2 nm Gaussian
FWHM of SRF 6 nm 0.1 nm Gaussian
Spectral sampling interval 4 nm 0.01 nm Gaussian
Radiometric response From table 1% Gaussian
Aircraft window
transmission

From table 1.5% Uniform

Polarization sensitivity see Eq. 13 see Eq. 14 Arc sine
Dark current 900 DN 0.6 DN Gaussian
Spectral stray light see Eq. 11 5% Gaussian
PRNU From table 0.5% Gaussian
Radiometric noise 0 see Eq. 12 Gaussian

aGaussian uncertainties are given for k � 1. Some parameters
and uncertainties are defined through the referenced equations.
“From table” refers to the look-up tables in which the mea-
surement data are stored.
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relevant part of the spectrum, the sphere’s emitted
spectral radiance uncertainty is given as σL � 1%,
with a Gaussian PDF. No radiometric nonlinearities
were introduced as these can be neglected for the stu-
died sensor.
PRNU. PRNU measurements were made before the
focal plane array was built into the instrument with
a homogeneous light source. The uncertainty is
σPRNU � 0.5%, with a Gaussian PDF. For both PRNU
correction and radiometric calibration, the actual
radiometric reference files are used here.
Mean dark current level. The mean dark current
level has an uncertainty of σD:C: � 0.6 DN during a
flight strip and follows a Gaussian distribution.
For the simulation, a dark current signal level of
900 DN is used. The uncertainty σD:C: is added as
a constant offset to all detector elements.
Radiometric noise. The radiometric noise of the in-
strument has a Gaussian PDF, its width σnoise given
by the functional relationship

σnoise � �12.38� 0.001743 · S� DN; (12)

which is a parametrization of the noise levels mea-
sured in ROSIS. All noise sources, i.e., dark current
noise, noise from the readout electronics, and photon
noise, are included here. Unlike σD:C:, the noise func-
tion is applied to all pixels individually.
Aircraft window transmission. Transmission
measurements were performed with two laboratory
spectrophotometers. A comparison of the results of
the two spectrophotometers yields a wavelength-
independent measurement uncertainty with a uni-
form PDF with a width of 1.5%.
Polarization sensitivity. The sensitivity to linear
polarization is modeled to increase linearly from
5% at shorter wavelengths to 15% at longer wave-
lengths over the spectral range of the instrument;
i.e., the polarization sensitivity pi of a channel i is
given by

pi � 8.7 · 10−4i� 0.05: (13)

The distribution function

U�ϕ; i� � pi

2
� pi

2
sin�ϕ� (14)

is used to model the uncertainty of the polarization of
the incident light. According to [3], this is the prob-
ability distribution for sinusoidally varying quanti-
ties with an unknown phase ϕ.
Readout smearing. ROSIS does not have a shutter,
and the readout of the CCD detector array is done in
the frame transfer mode. Thus, the smear signal
Ssmear;j of each pixel j is calculated with the following
equation:

Ssmear;j �
X115
i�1

Si;j ·
tsmear

texposure
; (15)

with tsmear � 1.8 · 10−6 s as the readout time and
texposure � 1∕40 s as the exposure time.

Note that, except for the radiometric noise, the un-
certainties are introduced so that no additional noise
is generated; e.g., the entire radiometric response
array is varied scalarly within the values given in
Table 1, meaning that the radiometric calibration ar-
ray used in a run of the MCM r is the product of the
reference radiometric calibration array rref and a
random scalar z.

5. Results

PyROSIS can be used to calculate traceable mea-
surement uncertainties for radiometrically cali-
brated data and their derived data products as well
as to perform sensitivity analyses to relate the uncer-
tainties of sensor parameters to the uncertainties in
the product of interest. Examples for this are pre-
sented in this section.

A. Number of Runs

The number of runs to be repeated to get an accurate
estimate of the uncertainty has to be determined. For
Fig. 1, 1000 frames were calculated, and the stan-
dard deviation for the signal level of the detector
at pixel 300, channel 90 was computed using an in-
creasing number of frames. The standard deviation
settles quickly to a value of about 0.53 mW∕
�m2 · sr · nm�, with variations not larger than 3% of
that value. For the reason of economy of time, a lower
number of frames, 200, is generated for the plots in
the following sections. Because of the long computa-
tion times, the total number of runs is well below the
required number to build a good approximation of
the output PDF but is still in accordance with [3],
as this approach allows for a uncertainty estimation
in finite time and this accuracy is sufficient for the
presentation of this method.

B. Tests of the Sensor Simulation

A test case for the sensor simulation is shown in
Fig. 2: a laboratory L0 spectrum, generated by

Fig. 1. (Color online) Standard deviation of the signal of one de-
tector element depending on how many Monte Carlo frames are
used.
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illuminating the instrument with an integrating
sphere, is compared to an L0 spectrum simulated
with PyROSIS using the sphere’s radiance spectrum.
The differences between both spectra can be attrib-
uted to the difference in mean dark current level,
noise, and change in the radiance of the sphere be-
tween the measurement of the spectrum used for si-
mulation and the actual measurement of the sphere
with ROSIS.

A second test is illustrated with Fig. 3: the reflec-
tance input spectrum is compared to the reflectance
obtained after simulation. As expected, the spectrum
generated by the full simulation differs mostly by the
noise contribution.

C. Traceable Measurement Uncertainties on Radiance
Data

A major purpose of the software is to calculate mea-
surement uncertainties for given spectra. An exam-
ple is shown in Figs. 4 and 5. The continuous curve in

Fig. 5 shows half of the error bars width shown in
Fig. 4 divided by the actual value, corresponding to
a relative uncertainty for k � 2.

For the given radiance levels, as shown in Fig. 5,
the combined uncertainty is between 10% and 120%
for k � 2. This is much larger than the radiometric
calibration uncertainty of 2% that was set for the si-
mulation. The increase of the measurement uncer-
tainties for wavelengths smaller than 500 nm
depicted in Fig. 5 is concordant with experience with
ROSIS and can be explained with a low sensitivity of
the instrument and the low radiance levels of the
calibration source in that wavelength range. The in-
crease of the combined uncertainty above 700 nm can
be explained by the very low reflectance of water and
the low level of path radiance.

Fig. 2. (Color online) Comparison of two L0 spectra—one simu-
lated from the calibration data and our integrating sphere (solid
line) and one from a laboratory measurement of the same sphere
(dashed line).

Fig. 3. (Color online) Comparison between the input reflectance
spectrum generated by WASI (dashed line) and a retrieved spec-
trum calculated with all error sources (� symbols).

Fig. 4. (Color online) Mean calibrated spectrum with error bars
defined through 95% coverage interval (k � 2).

Fig. 5. (Color online) Combined measurement uncertainty for
k � 2 for the spectral radiance data. The solid curve describes
the uncertainties given all effects, the dashed curve the uncer-
tainty obtained if only noise is an uncertainty source in the simu-
lation, and the dotted curve the contributions of all other effects
together.
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D. Influence of Instrument Parameters

Further results are visible in Fig. 5, which shows the
combined uncertainty for three different cases: all
contributing effects are accounted for, all effects ex-
cept the radiometric noise are considered, and only
radiometric noise contributing to the uncertainty.

Figure 5 clearly illustrates that, for this kind of
target, i.e., a water surface of low reflectance, parti-
cularly at wavelengths above 700 nm, radiometric
noise is the dominating source of measurement un-
certainty. Therefore, a more detailed breakdown of
the uncertainty contributions of the other sensor
model parameters was not studied further, as re-
duced calibration uncertainties would not improve
the overall data quality.

E. End-to-End Simulation with PyROSIS and WASI

1. Retrieval of CL
The simulated signal and uncertainties using
PyROSIS can be used for the study of the measure-
ment uncertainties of products derived from sensor
data. After converting the simulated radiances into
reflectances as described in Subsection 3.D, the si-
mulated results from PyROSIS are used to calculate
the uncertainties of a product, the suspended matter
concentration CL. This was done by performing a
retrieval of CL with WASI for a specific geometric
pixel of each frame generated in the Monte Carlo
simulation.

Figure 6 shows the relative uncertainties for the
three described uncertainty models for the simulated
reflectances obtained after the removal of atmo-
spheric contributions to the spectra. The combined
uncertainty of the data is of the order of 40% to 100%
(k � 2). Again, the combined uncertainty is domi-
nated by the noise contribution.

The resulting distribution of CL, derived from a
pixel near the center of the detector array, is shown
in the histogram in Fig. 7. The retrieved concentra-
tion of CL � 1.8� 1.2 (k � 2) shows the large influ-
ence of the sensor uncertainties on the retrieval.

2. Influence of Stray Light Correction of CL

Retrieval
PyROSIS can be used to quantify the effect of each
specific calibration step. For example, to estimate
the influence of stray light on the retrieval of CL, a
PyROSIS simulation was performed in which the
systematic error due to stray light was left uncor-
rected in the L1 calibration. As shown in Fig. 8, this
leads to wavelength-dependent errors with maxi-
mum underestimation of radiance levels of 30%.

These differences in radiance levels lead to a com-
plete failure of the retrieval: WASI estimates the sus-
pended matter content to exactly zero in all cases.

Fig. 6. (Color online) Combined measurement uncertainty for
k � 2 for the remote sensing reflectance data. The solid curve de-
scribes the uncertainties given all effects, the dashed curve the un-
certainty obtained if only noise is an uncertainty source in the
simulation, and the dotted curve the contributions of all other ef-
fects together. The relative uncertainties for wavelengths greater
700 nm are not a reliable measure as the remote sensing reflec-
tance is almost zero in all analyzed spectra.

Fig. 7. (Color online) Histogram of the retrieved suspended
matter concentrations. Actual concentration, CL � 2 mg∕l

Fig. 8. (Color online) Relative difference between the averaged si-
mulated radiance spectra with and without stray light correction.
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6. Discussion

With PyROSIS, to the authors best knowledge, it is
for the first time possible to compute the traceable
measurement uncertainties for L1 data of hyperspec-
tral sensors, and these kinds of analyses are required
if remote sensing data products are to obtain credible
measurement uncertainties.

Another feature of PyROSIS that was demon-
strated is the assessment of the contribution of the
individual uncertainties of the sensor properties to
the combined uncertainty. This is needed to assess
the improvement achievable through laboratory
characterization. The conclusion of Subsection 5.D
is that, due to the radiometric noise dominance, im-
proved laboratory characterization procedures for
other sensor parameters cannot improve the data
quality. Instead, it motivates us to analyze the reduc-
tion of radiometric noise, which can be achieved
through software or hardware binning of the data.

PyROSIS was used in conjunction with WASI to
perform a complete end-to-end simulation to obtain
combined measurement uncertainties for an end pro-
duct based on sensor parameters. The example used
in this study was the suspended matter concentra-
tion CL. Possible next steps include the derivation
of combined uncertainties for a more realistic multi-
parameter retrieval or derivation in combination
with an atmospheric correction.

Finally, with PyROSIS, more realistic simulated
spectra can be generated. This can assist the retrie-
val algorithm development if the algorithms can be
designed considering sensor specific systematic ef-
fects. Also, the sensitivity of algorithms to sensor
measurement uncertainties can be assessed this way.

7. Conclusion

In this paper, software capable of using imaging spec-
trometer characterization data to propagate mea-
surement uncertainties through different product
levels with a Monte Carlo approach has been pre-
sented. This is necessary to calibrate hyperspectral
data in a traceable way and to expand previous stu-
dies concerning error propagation and estimation of
hyperspectral data, such as [1,6,14]. While scene si-
mulators are a prerequisite for algorithm develop-
ment [15], this type of analysis is necessary for
estimating the influence of sensor performance on
data products, helpful for sensor optimization, and
could assist algorithm development.

It is planned to expand this software to incorporate
more instruments when characterization data of
these sensors become available. Finally, this tool will
be used to define scientifically motivated require-
ments forDLR’s calibration laboratory and to identify
limiting measurement procedures and equipment.

The author would like to thank Peter Gege and
the anonymous reviewer for their valuable
comments.
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