BS_20190115_021759_raw01 - Day 4

REVISION DATE: 28-Jan-2019 10:41:01

Exerimental BS or RS data starting to put data into new Vaux setup.


Table caption: BS03 Data
Dataset# Filename / Fit# Type file creation date Total Exposure Time Tracks on Temperature Pre Amplifier Gain Matrix Max (ADU) Matrix Mean (ADU) Matrix % std
1 BS_20190115_021759_raw01 / 001 Dark 15-Jan-2019 02:17:59 5 6 -60 4 4033 3982.1933 0.21315
1 BS_20190115_021759_raw01 / 002 Dark 15-Jan-2019 02:18:07 5 6 -60 4 4037 3989.1923 0.21935
1 BS_20190115_021759_raw01 / 001 Lite 15-Jan-2019 02:18:18 5 6 -60 4 47093 4675.9266 82.5609
1 BS_20190115_021759_raw01 / 002 Lite 15-Jan-2019 02:18:26 5 6 -60 4 46740 4678.9579 82.5395
1 BS_20190115_021759_raw01 / 003 Lite 15-Jan-2019 02:18:33 5 6 -60 4 46849 4680.2647 82.5211
1 BS_20190115_021759_raw01 / 004 Lite 15-Jan-2019 02:18:41 5 6 -60 4 46980 4681.3343 82.5095
1 BS_20190115_021759_raw01 / 003 Dark 15-Jan-2019 02:18:52 5 6 -60 4 4050 3996.5969 0.2149
1 BS_20190115_021759_raw01 / 004 Dark 15-Jan-2019 02:18:59 5 6 -60 4 4049 3997.3625 0.21683
2 BS_20190115_021759_raw01 / 005 Dark 15-Jan-2019 02:19:44 5 6 -60 4 8927 3991.827 0.24659
2 BS_20190115_021759_raw01 / 006 Dark 15-Jan-2019 02:19:52 5 6 -60 4 4047 3994.0333 0.2142
2 BS_20190115_021759_raw01 / 005 Lite 15-Jan-2019 02:20:02 5 6 -60 4 46690 4679.2317 82.5302
2 BS_20190115_021759_raw01 / 006 Lite 15-Jan-2019 02:20:10 5 6 -60 4 47239 4680.5179 82.5124
2 BS_20190115_021759_raw01 / 007 Lite 15-Jan-2019 02:20:18 5 6 -60 4 47140 4681.5956 82.5056
2 BS_20190115_021759_raw01 / 008 Lite 15-Jan-2019 02:20:25 5 6 -60 4 47144 4682.2518 82.5006
2 BS_20190115_021759_raw01 / 007 Dark 15-Jan-2019 02:20:36 5 6 -60 4 4050 3997.1528 0.21651
2 BS_20190115_021759_raw01 / 008 Dark 15-Jan-2019 02:20:44 5 6 -60 4 4048 3997.6399 0.21739
3 BS_20190115_021759_raw01 / 009 Dark 15-Jan-2019 02:21:40 5 6 -60 4 4037 3990.8859 0.21381
3 BS_20190115_021759_raw01 / 010 Dark 15-Jan-2019 02:21:48 5 6 -60 4 4043 3993.4401 0.21395
3 BS_20190115_021759_raw01 / 009 Lite 15-Jan-2019 02:21:58 5 6 -60 4 47022 4678.679 82.5329
3 BS_20190115_021759_raw01 / 010 Lite 15-Jan-2019 02:22:06 5 6 -60 4 46943 4680.3482 82.5229
3 BS_20190115_021759_raw01 / 011 Lite 15-Jan-2019 02:22:14 5 6 -60 4 46918 4681.0959 82.5135
3 BS_20190115_021759_raw01 / 012 Lite 15-Jan-2019 02:22:21 5 6 -60 4 46785 4681.8443 82.5034
3 BS_20190115_021759_raw01 / 011 Dark 15-Jan-2019 02:22:32 5 6 -60 4 4044 3996.9865 0.21683
3 BS_20190115_021759_raw01 / 012 Dark 15-Jan-2019 02:22:40 5 6 -60 4 4051 3997.6774 0.21768
4 BS_20190115_021759_raw01 / 013 Dark 15-Jan-2019 02:23:29 5 6 -60 4 4039 3991.411 0.21423
4 BS_20190115_021759_raw01 / 014 Dark 15-Jan-2019 02:23:37 5 6 -60 4 11124 3993.9959 0.31858
4 BS_20190115_021759_raw01 / 013 Lite 15-Jan-2019 02:23:47 5 6 -60 4 47126 4679.3668 82.524
4 BS_20190115_021759_raw01 / 014 Lite 15-Jan-2019 02:23:55 5 6 -60 4 46867 4680.6859 82.5163
4 BS_20190115_021759_raw01 / 015 Lite 15-Jan-2019 02:24:03 5 6 -60 4 47019 4681.6109 82.4995
4 BS_20190115_021759_raw01 / 016 Lite 15-Jan-2019 02:24:10 5 6 -60 4 46732 4682.4089 82.5072
4 BS_20190115_021759_raw01 / 015 Dark 15-Jan-2019 02:24:21 5 6 -60 4 9570 3997.2652 0.25804
4 BS_20190115_021759_raw01 / 016 Dark 15-Jan-2019 02:24:29 5 6 -60 4 4051 3997.9008 0.21732
5 BS_20190115_021759_raw01 / 017 Dark 15-Jan-2019 02:25:14 5 6 -60 4 4039 3991.8361 0.2144
5 BS_20190115_021759_raw01 / 018 Dark 15-Jan-2019 02:25:21 5 6 -60 4 4042 3994.2431 0.21393
5 BS_20190115_021759_raw01 / 017 Lite 15-Jan-2019 02:25:32 5 6 -60 4 46927 4679.5181 82.5159
5 BS_20190115_021759_raw01 / 018 Lite 15-Jan-2019 02:25:40 5 6 -60 4 47241 4680.9028 82.5064
5 BS_20190115_021759_raw01 / 019 Lite 15-Jan-2019 02:25:47 5 6 -60 4 46883 4682.0725 82.5101
5 BS_20190115_021759_raw01 / 020 Lite 15-Jan-2019 02:25:55 5 6 -60 4 47031 4682.6935 82.5089
5 BS_20190115_021759_raw01 / 019 Dark 15-Jan-2019 02:26:06 5 6 -60 4 4047 3997.3387 0.21664
5 BS_20190115_021759_raw01 / 020 Dark 15-Jan-2019 02:26:13 5 6 -60 4 4049 3998.0469 0.2174
6 BS_20190115_021759_raw01 / 021 Dark 15-Jan-2019 02:36:04 5 6 -60 4 4040 3985.0441 0.21305
6 BS_20190115_021759_raw01 / 022 Dark 15-Jan-2019 02:36:11 5 6 -60 4 4045 3990.7813 0.22369
6 BS_20190115_021759_raw01 / 021 Lite 15-Jan-2019 02:36:22 5 6 -60 4 46128 4664.7055 81.286
6 BS_20190115_021759_raw01 / 022 Lite 15-Jan-2019 02:36:30 5 6 -60 4 46233 4668.6706 81.2339
6 BS_20190115_021759_raw01 / 023 Lite 15-Jan-2019 02:36:37 5 6 -60 4 46226 4670.3799 81.2216
6 BS_20190115_021759_raw01 / 024 Lite 15-Jan-2019 02:36:45 5 6 -60 4 46097 4671.3166 81.2081
6 BS_20190115_021759_raw01 / 023 Dark 15-Jan-2019 02:36:56 5 6 -60 4 4052 3997.9497 0.21431
6 BS_20190115_021759_raw01 / 024 Dark 15-Jan-2019 02:37:04 5 6 -60 4 6889 3998.8326 0.22819
7 BS_20190115_021759_raw01 / 025 Dark 15-Jan-2019 02:37:51 5 6 -60 4 4034 3989.5439 0.22166
7 BS_20190115_021759_raw01 / 026 Dark 15-Jan-2019 02:37:59 5 6 -60 4 4048 3994.5523 0.21876
7 BS_20190115_021759_raw01 / 025 Lite 15-Jan-2019 02:38:09 5 6 -60 4 46178 4667.9083 81.2495
7 BS_20190115_021759_raw01 / 026 Lite 15-Jan-2019 02:38:17 5 6 -60 4 46221 4670.388 81.2139
7 BS_20190115_021759_raw01 / 027 Lite 15-Jan-2019 02:38:25 5 6 -60 4 46246 4671.6408 81.2096
7 BS_20190115_021759_raw01 / 028 Lite 15-Jan-2019 02:38:32 5 6 -60 4 46401 4672.2162 81.1978
7 BS_20190115_021759_raw01 / 027 Dark 15-Jan-2019 02:38:43 5 6 -60 4 5802 3998.5152 0.22239
7 BS_20190115_021759_raw01 / 028 Dark 15-Jan-2019 02:38:51 5 6 -60 4 4052 3999.2133 0.21456
8 BS_20190115_021759_raw01 / 029 Dark 15-Jan-2019 02:42:09 5 6 -60 4 4037 3985.4579 0.21004
8 BS_20190115_021759_raw01 / 030 Dark 15-Jan-2019 02:42:16 5 6 -60 4 6055 3989.918 0.22994
8 BS_20190115_021759_raw01 / 029 Lite 15-Jan-2019 02:42:27 5 6 -60 4 46332 4664.4712 81.3309
8 BS_20190115_021759_raw01 / 030 Lite 15-Jan-2019 02:42:35 5 6 -60 4 46076 4668.1502 81.2776
8 BS_20190115_021759_raw01 / 031 Lite 15-Jan-2019 02:42:42 5 6 -60 4 46140 4670.6808 81.2392
8 BS_20190115_021759_raw01 / 032 Lite 15-Jan-2019 02:42:50 5 6 -60 4 45986 4672.3171 81.2346
8 BS_20190115_021759_raw01 / 031 Dark 15-Jan-2019 02:43:01 5 6 -60 4 4052 3998.5465 0.21491
8 BS_20190115_021759_raw01 / 032 Dark 15-Jan-2019 02:43:08 5 6 -60 4 4051 3999.4913 0.21362
9 BS_20190115_021759_raw01 / 033 Dark 15-Jan-2019 02:43:55 5 6 -60 4 4040 3988.8025 0.2161
9 BS_20190115_021759_raw01 / 034 Dark 15-Jan-2019 02:44:02 5 6 -60 4 4045 3993.7822 0.22434
9 BS_20190115_021759_raw01 / 033 Lite 15-Jan-2019 02:44:13 5 6 -60 4 46215 4667.3417 81.3038
9 BS_20190115_021759_raw01 / 034 Lite 15-Jan-2019 02:44:21 5 6 -60 4 46185 4670.7535 81.2532
9 BS_20190115_021759_raw01 / 035 Lite 15-Jan-2019 02:44:29 5 6 -60 4 46240 4672.2628 81.2437
9 BS_20190115_021759_raw01 / 036 Lite 15-Jan-2019 02:44:36 5 6 -60 4 46533 4673.2633 81.225
9 BS_20190115_021759_raw01 / 035 Dark 15-Jan-2019 02:44:47 5 6 -60 4 7988 3999.0901 0.24016
9 BS_20190115_021759_raw01 / 036 Dark 15-Jan-2019 02:44:55 5 6 -60 4 4051 3999.9252 0.21426
10 BS_20190115_021759_raw01 / 037 Dark 15-Jan-2019 02:51:50 5 6 -60 4 4037 3985.4267 0.21059
10 BS_20190115_021759_raw01 / 038 Dark 15-Jan-2019 02:51:57 5 6 -60 4 4970 3989.3578 0.2151
10 BS_20190115_021759_raw01 / 037 Lite 15-Jan-2019 02:52:08 5 6 -60 4 47061 4676.4106 82.6667
10 BS_20190115_021759_raw01 / 038 Lite 15-Jan-2019 02:52:16 5 6 -60 4 47353 4679.2274 82.6343
10 BS_20190115_021759_raw01 / 039 Lite 15-Jan-2019 02:52:23 5 6 -60 4 46897 4681.4505 82.5955
10 BS_20190115_021759_raw01 / 040 Lite 15-Jan-2019 02:52:31 5 6 -60 4 47311 4683.4049 82.5621
10 BS_20190115_021759_raw01 / 039 Dark 15-Jan-2019 02:52:42 5 6 -60 4 4052 3997.8825 0.22198
10 BS_20190115_021759_raw01 / 040 Dark 15-Jan-2019 02:52:50 5 6 -60 4 5695 3999.5472 0.22429
11 BS_20190115_021759_raw01 / 041 Dark 15-Jan-2019 02:54:22 5 6 -60 4 4041 3986.3376 0.21065
11 BS_20190115_021759_raw01 / 042 Dark 15-Jan-2019 02:54:29 5 6 -60 4 4037 3989.9311 0.21262
11 BS_20190115_021759_raw01 / 041 Lite 15-Jan-2019 02:54:40 5 6 -60 4 47288 4676.9547 82.6469
11 BS_20190115_021759_raw01 / 042 Lite 15-Jan-2019 02:54:48 5 6 -60 4 47014 4679.624 82.6099
11 BS_20190115_021759_raw01 / 043 Lite 15-Jan-2019 02:54:56 5 6 -60 4 47123 4681.8078 82.5699
11 BS_20190115_021759_raw01 / 044 Lite 15-Jan-2019 02:55:03 5 6 -60 4 46842 4683.7424 82.548
11 BS_20190115_021759_raw01 / 043 Dark 15-Jan-2019 02:55:14 5 6 -60 4 4046 3997.9731 0.22208
11 BS_20190115_021759_raw01 / 044 Dark 15-Jan-2019 02:55:22 5 6 -60 4 4052 3999.7802 0.21783
12 BS_20190115_021759_raw01 / 045 Dark 15-Jan-2019 02:56:10 5 6 -60 4 4714 3988.5335 0.21173
12 BS_20190115_021759_raw01 / 046 Dark 15-Jan-2019 02:56:17 5 6 -60 4 4040 3991.9619 0.2178
12 BS_20190115_021759_raw01 / 045 Lite 15-Jan-2019 02:56:28 5 6 -60 4 47033 4678.2137 82.6063
12 BS_20190115_021759_raw01 / 046 Lite 15-Jan-2019 02:56:36 5 6 -60 4 46937 4681.0649 82.5759
12 BS_20190115_021759_raw01 / 047 Lite 15-Jan-2019 02:56:43 5 6 -60 4 46942 4682.9913 82.5448
12 BS_20190115_021759_raw01 / 048 Lite 15-Jan-2019 02:56:51 5 6 -60 4 47138 4684.6924 82.5263
12 BS_20190115_021759_raw01 / 047 Dark 15-Jan-2019 02:57:02 5 6 -60 4 4051 3998.6263 0.2219
12 BS_20190115_021759_raw01 / 048 Dark 15-Jan-2019 02:57:10 5 6 -60 4 6084 4000.2229 0.23035
13 BS_20190115_021759_raw01 / 049 Dark 15-Jan-2019 02:58:14 5 6 -60 4 4040 3987.5129 0.21066
13 BS_20190115_021759_raw01 / 050 Dark 15-Jan-2019 02:58:21 5 6 -60 4 4044 3991.0604 0.21419
13 BS_20190115_021759_raw01 / 049 Lite 15-Jan-2019 02:58:32 5 6 -60 4 46926 4677.5682 82.6209
13 BS_20190115_021759_raw01 / 050 Lite 15-Jan-2019 02:58:40 5 6 -60 4 47179 4680.3921 82.5936
13 BS_20190115_021759_raw01 / 051 Lite 15-Jan-2019 02:58:48 5 6 -60 4 46962 4682.3941 82.5799
13 BS_20190115_021759_raw01 / 052 Lite 15-Jan-2019 02:58:55 5 6 -60 4 47049 4683.8971 82.5553
13 BS_20190115_021759_raw01 / 051 Dark 15-Jan-2019 02:59:06 5 6 -60 4 4050 3998.0201 0.22378
13 BS_20190115_021759_raw01 / 052 Dark 15-Jan-2019 02:59:14 5 6 -60 4 4048 3999.9305 0.21934
14 BS_20190115_021759_raw01 / 053 Dark 15-Jan-2019 03:10:12 5 6 -60 4 4033 3985.8692 0.21018
14 BS_20190115_021759_raw01 / 054 Dark 15-Jan-2019 03:10:20 5 6 -60 4 4046 3989.646 0.21043
14 BS_20190115_021759_raw01 / 053 Lite 15-Jan-2019 03:10:30 5 6 -60 4 46433 4668.3714 81.7762
14 BS_20190115_021759_raw01 / 054 Lite 15-Jan-2019 03:10:38 5 6 -60 4 46410 4671.1076 81.754
14 BS_20190115_021759_raw01 / 055 Lite 15-Jan-2019 03:10:46 5 6 -60 4 46607 4672.6588 81.7299
14 BS_20190115_021759_raw01 / 056 Lite 15-Jan-2019 03:10:53 5 6 -60 4 46415 4674.1539 81.7222
14 BS_20190115_021759_raw01 / 055 Dark 15-Jan-2019 03:11:04 5 6 -60 4 5339 3996.147 0.22377
14 BS_20190115_021759_raw01 / 056 Dark 15-Jan-2019 03:11:12 5 6 -60 4 4047 3998.2712 0.22209
15 BS_20190115_021759_raw01 / 057 Dark 15-Jan-2019 03:12:03 5 6 -60 4 6372 3988.4639 0.21835
15 BS_20190115_021759_raw01 / 058 Dark 15-Jan-2019 03:12:11 5 6 -60 4 5242 3991.7425 0.21364
15 BS_20190115_021759_raw01 / 057 Lite 15-Jan-2019 03:12:21 5 6 -60 4 46394 4670.5585 81.7823
15 BS_20190115_021759_raw01 / 058 Lite 15-Jan-2019 03:12:29 5 6 -60 4 46587 4672.4725 81.745
15 BS_20190115_021759_raw01 / 059 Lite 15-Jan-2019 03:12:37 5 6 -60 4 46597 4674.0565 81.7365
15 BS_20190115_021759_raw01 / 060 Lite 15-Jan-2019 03:12:44 5 6 -60 4 46479 4675.4446 81.7187
15 BS_20190115_021759_raw01 / 059 Dark 15-Jan-2019 03:12:55 5 6 -60 4 4597 3997.1802 0.22201
15 BS_20190115_021759_raw01 / 060 Dark 15-Jan-2019 03:13:03 5 6 -60 4 4051 3999.1324 0.22281
16 BS_20190115_021759_raw01 / 061 Dark 15-Jan-2019 03:13:49 5 6 -60 4 4041 3989.2041 0.21042
16 BS_20190115_021759_raw01 / 062 Dark 15-Jan-2019 03:13:56 5 6 -60 4 7714 3992.2752 0.24475
16 BS_20190115_021759_raw01 / 061 Lite 15-Jan-2019 03:14:07 5 6 -60 4 46496 4670.7886 81.7759
16 BS_20190115_021759_raw01 / 062 Lite 15-Jan-2019 03:14:15 5 6 -60 4 46602 4672.9778 81.7521
16 BS_20190115_021759_raw01 / 063 Lite 15-Jan-2019 03:14:22 5 6 -60 4 46600 4674.5945 81.7427
16 BS_20190115_021759_raw01 / 064 Lite 15-Jan-2019 03:14:30 5 6 -60 4 46517 4675.7991 81.726
16 BS_20190115_021759_raw01 / 063 Dark 15-Jan-2019 03:14:41 5 6 -60 4 4048 3997.2162 0.22031
16 BS_20190115_021759_raw01 / 064 Dark 15-Jan-2019 03:14:48 5 6 -60 4 5483 3999.0693 0.22923
17 BS_20190115_021759_raw01 / 065 Dark 15-Jan-2019 03:15:38 5 6 -60 4 4037 3988.8076 0.2108
17 BS_20190115_021759_raw01 / 066 Dark 15-Jan-2019 03:15:46 5 6 -60 4 4043 3992.007 0.21001
17 BS_20190115_021759_raw01 / 065 Lite 15-Jan-2019 03:15:56 5 6 -60 4 46652 4671.0037 81.7948
17 BS_20190115_021759_raw01 / 066 Lite 15-Jan-2019 03:16:04 5 6 -60 4 46498 4673.0764 81.7666
17 BS_20190115_021759_raw01 / 067 Lite 15-Jan-2019 03:16:12 5 6 -60 4 46669 4674.4214 81.7515
17 BS_20190115_021759_raw01 / 068 Lite 15-Jan-2019 03:16:19 5 6 -60 4 46527 4675.6336 81.7395
17 BS_20190115_021759_raw01 / 067 Dark 15-Jan-2019 03:16:30 5 6 -60 4 10464 3996.9981 0.28404
17 BS_20190115_021759_raw01 / 068 Dark 15-Jan-2019 03:16:38 5 6 -60 4 4050 3998.792 0.2227
18 BS_20190115_021759_raw01 / 069 Dark 15-Jan-2019 03:23:42 5 6 -60 4 4037 3986.3011 0.21014
18 BS_20190115_021759_raw01 / 070 Dark 15-Jan-2019 03:23:49 5 6 -60 4 4039 3989.8971 0.20945
18 BS_20190115_021759_raw01 / 069 Lite 15-Jan-2019 03:24:00 5 6 -60 4 46475 4667.6573 81.6347
18 BS_20190115_021759_raw01 / 070 Lite 15-Jan-2019 03:24:08 5 6 -60 4 46308 4670.2074 81.6061
18 BS_20190115_021759_raw01 / 071 Lite 15-Jan-2019 03:24:15 5 6 -60 4 46417 4672.1075 81.5907
18 BS_20190115_021759_raw01 / 072 Lite 15-Jan-2019 03:24:23 5 6 -60 4 46426 4673.1427 81.565
18 BS_20190115_021759_raw01 / 071 Dark 15-Jan-2019 03:24:34 5 6 -60 4 4042 3996.088 0.21121
18 BS_20190115_021759_raw01 / 072 Dark 15-Jan-2019 03:24:42 5 6 -60 4 4051 3997.5234 0.21559
19 BS_20190115_021759_raw01 / 073 Dark 15-Jan-2019 03:26:05 5 6 -60 4 4033 3987.3947 0.20978
19 BS_20190115_021759_raw01 / 074 Dark 15-Jan-2019 03:26:12 5 6 -60 4 7591 3990.887 0.24209
19 BS_20190115_021759_raw01 / 073 Lite 15-Jan-2019 03:26:23 5 6 -60 4 46389 4668.5071 81.6304
19 BS_20190115_021759_raw01 / 074 Lite 15-Jan-2019 03:26:31 5 6 -60 4 46395 4670.7848 81.607
19 BS_20190115_021759_raw01 / 075 Lite 15-Jan-2019 03:26:38 5 6 -60 4 46538 4672.4382 81.5843
19 BS_20190115_021759_raw01 / 076 Lite 15-Jan-2019 03:26:46 5 6 -60 4 46419 4673.6883 81.5719
19 BS_20190115_021759_raw01 / 075 Dark 15-Jan-2019 03:26:57 5 6 -60 4 4047 3996.3951 0.21157
19 BS_20190115_021759_raw01 / 076 Dark 15-Jan-2019 03:27:04 5 6 -60 4 4048 3997.7983 0.21689
20 BS_20190115_021759_raw01 / 077 Dark 15-Jan-2019 03:27:27 5 6 -60 4 4046 3993.2339 0.21028
20 BS_20190115_021759_raw01 / 078 Dark 15-Jan-2019 03:27:34 5 6 -60 4 4040 3995.2588 0.2106
20 BS_20190115_021759_raw01 / 077 Lite 15-Jan-2019 03:27:45 5 6 -60 4 46491 4671.8103 81.5889
20 BS_20190115_021759_raw01 / 078 Lite 15-Jan-2019 03:27:53 5 6 -60 4 46476 4673.5572 81.5762
20 BS_20190115_021759_raw01 / 079 Lite 15-Jan-2019 03:28:01 5 6 -60 4 46357 4674.5074 81.5575
20 BS_20190115_021759_raw01 / 080 Lite 15-Jan-2019 03:28:08 5 6 -60 4 46410 4675.249 81.5509
20 BS_20190115_021759_raw01 / 079 Dark 15-Jan-2019 03:28:19 5 6 -60 4 4049 3997.5941 0.21524
20 BS_20190115_021759_raw01 / 080 Dark 15-Jan-2019 03:28:27 5 6 -60 4 4050 3999.0645 0.2194
21 BS_20190115_021759_raw01 / 081 Dark 15-Jan-2019 03:29:12 5 6 -60 4 4036 3989.7153 0.20973
21 BS_20190115_021759_raw01 / 082 Dark 15-Jan-2019 03:29:20 5 6 -60 4 4041 3992.9041 0.21044
21 BS_20190115_021759_raw01 / 081 Lite 15-Jan-2019 03:29:31 5 6 -60 4 46511 4670.205 81.6235
21 BS_20190115_021759_raw01 / 082 Lite 15-Jan-2019 03:29:38 5 6 -60 4 46385 4672.276 81.5997
21 BS_20190115_021759_raw01 / 083 Lite 15-Jan-2019 03:29:46 5 6 -60 4 46566 4673.6649 81.5931
21 BS_20190115_021759_raw01 / 084 Lite 15-Jan-2019 03:29:54 5 6 -60 4 46509 4674.4869 81.5773
21 BS_20190115_021759_raw01 / 083 Dark 15-Jan-2019 03:30:05 5 6 -60 4 4047 3996.8025 0.21207
21 BS_20190115_021759_raw01 / 084 Dark 15-Jan-2019 03:30:12 5 6 -60 4 4052 3998.3116 0.21729
22 BS_20190115_021759_raw01 / 085 Dark 15-Jan-2019 03:34:29 5 6 -60 4 4030 3986.354 0.21043
22 BS_20190115_021759_raw01 / 086 Dark 15-Jan-2019 03:34:37 5 6 -60 4 4041 3990.0511 0.20948
22 BS_20190115_021759_raw01 / 085 Lite 15-Jan-2019 03:34:48 5 6 -60 4 46577 4669.7454 81.8436
22 BS_20190115_021759_raw01 / 086 Lite 15-Jan-2019 03:34:55 5 6 -60 4 46782 4672.2683 81.8139
22 BS_20190115_021759_raw01 / 087 Lite 15-Jan-2019 03:35:03 5 6 -60 4 46672 4673.974 81.8055
22 BS_20190115_021759_raw01 / 088 Lite 15-Jan-2019 03:35:11 5 6 -60 4 46593 4675.3553 81.7953
22 BS_20190115_021759_raw01 / 087 Dark 15-Jan-2019 03:35:21 5 6 -60 4 4043 3996.1534 0.20944
22 BS_20190115_021759_raw01 / 088 Dark 15-Jan-2019 03:35:29 5 6 -60 4 8055 3997.3787 0.28449
23 BS_20190115_021759_raw01 / 089 Dark 15-Jan-2019 03:36:37 5 6 -60 4 4034 3988.0409 0.21002
23 BS_20190115_021759_raw01 / 090 Dark 15-Jan-2019 03:36:45 5 6 -60 4 4038 3991.3244 0.21008
23 BS_20190115_021759_raw01 / 089 Lite 15-Jan-2019 03:36:56 5 6 -60 4 46647 4670.97 81.8401
23 BS_20190115_021759_raw01 / 090 Lite 15-Jan-2019 03:37:03 5 6 -60 4 46675 4673.1776 81.8151
23 BS_20190115_021759_raw01 / 091 Lite 15-Jan-2019 03:37:11 5 6 -60 4 46612 4674.7609 81.8099
23 BS_20190115_021759_raw01 / 092 Lite 15-Jan-2019 03:37:18 5 6 -60 4 46731 4675.7962 81.7916
23 BS_20190115_021759_raw01 / 091 Dark 15-Jan-2019 03:37:29 5 6 -60 4 4043 3996.5473 0.20956
23 BS_20190115_021759_raw01 / 092 Dark 15-Jan-2019 03:37:37 5 6 -60 4 4047 3997.7596 0.21247
24 BS_20190115_021759_raw01 / 093 Dark 15-Jan-2019 03:38:26 5 6 -60 4 4035 3989.3675 0.20966
24 BS_20190115_021759_raw01 / 094 Dark 15-Jan-2019 03:38:33 5 6 -60 4 4041 3992.5799 0.21007
24 BS_20190115_021759_raw01 / 093 Lite 15-Jan-2019 03:38:44 5 6 -60 4 46465 4671.8005 81.8282
24 BS_20190115_021759_raw01 / 094 Lite 15-Jan-2019 03:38:52 5 6 -60 4 46522 4674.1668 81.8124
24 BS_20190115_021759_raw01 / 095 Lite 15-Jan-2019 03:38:59 5 6 -60 4 46869 4675.7561 81.805
24 BS_20190115_021759_raw01 / 096 Lite 15-Jan-2019 03:39:07 5 6 -60 4 46799 4676.5021 81.791
24 BS_20190115_021759_raw01 / 095 Dark 15-Jan-2019 03:39:18 5 6 -60 4 4043 3996.9817 0.20978
24 BS_20190115_021759_raw01 / 096 Dark 15-Jan-2019 03:39:25 5 6 -60 4 4050 3998.0411 0.21268
25 BS_20190115_021759_raw01 / 097 Dark 15-Jan-2019 03:40:10 5 6 -60 4 4037 3989.931 0.21009
25 BS_20190115_021759_raw01 / 098 Dark 15-Jan-2019 03:40:17 5 6 -60 4 4039 3993.0019 0.21019
25 BS_20190115_021759_raw01 / 097 Lite 15-Jan-2019 03:40:28 5 6 -60 4 46796 4672.5431 81.8451
25 BS_20190115_021759_raw01 / 098 Lite 15-Jan-2019 03:40:36 5 6 -60 4 46637 4674.5672 81.8248
25 BS_20190115_021759_raw01 / 099 Lite 15-Jan-2019 03:40:44 5 6 -60 4 46577 4675.9875 81.8172
25 BS_20190115_021759_raw01 / 100 Lite 15-Jan-2019 03:40:51 5 6 -60 4 46525 4676.6517 81.7985
25 BS_20190115_021759_raw01 / 099 Dark 15-Jan-2019 03:41:02 5 6 -60 4 4051 3997.1556 0.2098
25 BS_20190115_021759_raw01 / 100 Dark 15-Jan-2019 03:41:10 5 6 -60 4 4050 3998.2801 0.21205
26 BS_20190115_021759_raw01 / 101 Dark 15-Jan-2019 03:47:20 5 6 -60 4 4981 3986.766 0.21253
26 BS_20190115_021759_raw01 / 102 Dark 15-Jan-2019 03:47:27 5 6 -60 4 4034 3990.2489 0.20961
26 BS_20190115_021759_raw01 / 101 Lite 15-Jan-2019 03:47:38 5 6 -60 4 47222 4677.7438 82.6723
26 BS_20190115_021759_raw01 / 102 Lite 15-Jan-2019 03:47:46 5 6 -60 4 47030 4680.7694 82.6483
26 BS_20190115_021759_raw01 / 103 Lite 15-Jan-2019 03:47:53 5 6 -60 4 47296 4682.1312 82.6312
26 BS_20190115_021759_raw01 / 104 Lite 15-Jan-2019 03:48:01 5 6 -60 4 47236 4683.2803 82.6091
26 BS_20190115_021759_raw01 / 103 Dark 15-Jan-2019 03:48:12 5 6 -60 4 4046 3996.3813 0.20957
26 BS_20190115_021759_raw01 / 104 Dark 15-Jan-2019 03:48:20 5 6 -60 4 4043 3997.5866 0.20961
27 BS_20190115_021759_raw01 / 105 Dark 15-Jan-2019 03:49:08 5 6 -60 4 4035 3989.3639 0.21022
27 BS_20190115_021759_raw01 / 106 Dark 15-Jan-2019 03:49:15 5 6 -60 4 4041 3992.4591 0.20985
27 BS_20190115_021759_raw01 / 105 Lite 15-Jan-2019 03:49:26 5 6 -60 4 47184 4679.8659 82.6567
27 BS_20190115_021759_raw01 / 106 Lite 15-Jan-2019 03:49:34 5 6 -60 4 47081 4681.8933 82.6334
27 BS_20190115_021759_raw01 / 107 Lite 15-Jan-2019 03:49:41 5 6 -60 4 47297 4683.3468 82.6361
27 BS_20190115_021759_raw01 / 108 Lite 15-Jan-2019 03:49:49 5 6 -60 4 47095 4684.4708 82.6263
27 BS_20190115_021759_raw01 / 107 Dark 15-Jan-2019 03:50:00 5 6 -60 4 5073 3996.901 0.21186
27 BS_20190115_021759_raw01 / 108 Dark 15-Jan-2019 03:50:08 5 6 -60 4 4049 3997.9887 0.21025
28 BS_20190115_021759_raw01 / 109 Dark 15-Jan-2019 03:51:04 5 6 -60 4 4038 3988.8364 0.21069
28 BS_20190115_021759_raw01 / 110 Dark 15-Jan-2019 03:51:12 5 6 -60 4 4041 3992.0733 0.20981
28 BS_20190115_021759_raw01 / 109 Lite 15-Jan-2019 03:51:23 5 6 -60 4 47066 4679.4836 82.6712
28 BS_20190115_021759_raw01 / 110 Lite 15-Jan-2019 03:51:30 5 6 -60 4 47033 4681.7173 82.6428
28 BS_20190115_021759_raw01 / 111 Lite 15-Jan-2019 03:51:38 5 6 -60 4 47060 4683.1806 82.6295
28 BS_20190115_021759_raw01 / 112 Lite 15-Jan-2019 03:51:45 5 6 -60 4 47223 4684.1202 82.6129
28 BS_20190115_021759_raw01 / 111 Dark 15-Jan-2019 03:51:56 5 6 -60 4 4044 3996.7773 0.20989
28 BS_20190115_021759_raw01 / 112 Dark 15-Jan-2019 03:52:04 5 6 -60 4 4045 3997.8199 0.21011
29 BS_20190115_021759_raw01 / 113 Dark 15-Jan-2019 03:52:53 5 6 -60 4 4032 3989.3618 0.2096

Grouped Image file: BS_20190115_N001_grouped.html
Grouped Image file: BS_20190115_N002_grouped.html
Grouped Image file: BS_20190115_N003_grouped.html
Grouped Image file: BS_20190115_N005_grouped.html
Grouped Image file: BS_20190115_N006_grouped.html
Grouped Image file: BS_20190115_N007_grouped.html
Grouped Image file: BS_20190115_N009_grouped.html
Grouped Image file: BS_20190115_N020_grouped.html
Grouped Image file: BS_20190115_N022_grouped.html

image

Figure 1A: Mikes Lamp monitoring log files. One shows the whole data set and one shows only the data with FITS files. black * is the number from Mikes logsheet.


image

Figure 2A:



Graphs below are of the Nets for a dataset. A dataset is a group of dark-lite-dark files that Mike says in his logsheet are collected together. One net = darks before and after averaged then , lights averaged, then avg_lite-avg_dark and the avg_net divided by intergration time for each track.
image

Figure 1B: All the net data sets with a track illuminated. This shows ALL the net tracks with light on them.


image

Figure 2B: The net for one dataset (dark-lite-dark) for all tracks illuminated or not. This allows you to see the straylight on other tracks. The dataset number and fits files used to create this net are in the title of the figure.


image

Figure 3B: The net for one dataset (dark-lite-dark) for all tracks illuminated or not. This allows you to see the straylight on other tracks. The dataset number and fits files used to create this net are in the title of the figure.


image

Figure 4B: The net for one dataset (dark-lite-dark) for all tracks illuminated or not. This allows you to see the straylight on other tracks. The dataset number and fits files used to create this net are in the title of the figure.


image

Figure 5B: The net for one dataset (dark-lite-dark) for all tracks illuminated or not. This allows you to see the straylight on other tracks. The dataset number and fits files used to create this net are in the title of the figure.


image

Figure 6B: The net for one dataset (dark-lite-dark) for all tracks illuminated or not. This allows you to see the straylight on other tracks. The dataset number and fits files used to create this net are in the title of the figure.


image

Figure 7B: The net for one dataset (dark-lite-dark) for all tracks illuminated or not. This allows you to see the straylight on other tracks. The dataset number and fits files used to create this net are in the title of the figure.


image

Figure 8B: The net for one dataset (dark-lite-dark) for all tracks illuminated or not. This allows you to see the straylight on other tracks. The dataset number and fits files used to create this net are in the title of the figure.


image

Figure 9B: The net for one dataset (dark-lite-dark) for all tracks illuminated or not. This allows you to see the straylight on other tracks. The dataset number and fits files used to create this net are in the title of the figure.


image

Figure 10B: The net for one dataset (dark-lite-dark) for all tracks illuminated or not. This allows you to see the straylight on other tracks. The dataset number and fits files used to create this net are in the title of the figure.


image

Figure 11B: The net for one dataset (dark-lite-dark) for all tracks illuminated or not. This allows you to see the straylight on other tracks. The dataset number and fits files used to create this net are in the title of the figure.


image

Figure 12B: The net for one dataset (dark-lite-dark) for all tracks illuminated or not. This allows you to see the straylight on other tracks. The dataset number and fits files used to create this net are in the title of the figure.


image

Figure 13B: The net for one dataset (dark-lite-dark) for all tracks illuminated or not. This allows you to see the straylight on other tracks. The dataset number and fits files used to create this net are in the title of the figure.


image

Figure 14B: The net for one dataset (dark-lite-dark) for all tracks illuminated or not. This allows you to see the straylight on other tracks. The dataset number and fits files used to create this net are in the title of the figure.


image

Figure 15B: The net for one dataset (dark-lite-dark) for all tracks illuminated or not. This allows you to see the straylight on other tracks. The dataset number and fits files used to create this net are in the title of the figure.


image

Figure 16B: The net for one dataset (dark-lite-dark) for all tracks illuminated or not. This allows you to see the straylight on other tracks. The dataset number and fits files used to create this net are in the title of the figure.


image

Figure 17B: The net for one dataset (dark-lite-dark) for all tracks illuminated or not. This allows you to see the straylight on other tracks. The dataset number and fits files used to create this net are in the title of the figure.


image

Figure 18B: The net for one dataset (dark-lite-dark) for all tracks illuminated or not. This allows you to see the straylight on other tracks. The dataset number and fits files used to create this net are in the title of the figure.


image

Figure 19B: The net for one dataset (dark-lite-dark) for all tracks illuminated or not. This allows you to see the straylight on other tracks. The dataset number and fits files used to create this net are in the title of the figure.


image

Figure 20B: The net for one dataset (dark-lite-dark) for all tracks illuminated or not. This allows you to see the straylight on other tracks. The dataset number and fits files used to create this net are in the title of the figure.


image

Figure 21B: The net for one dataset (dark-lite-dark) for all tracks illuminated or not. This allows you to see the straylight on other tracks. The dataset number and fits files used to create this net are in the title of the figure.


image

Figure 22B: The net for one dataset (dark-lite-dark) for all tracks illuminated or not. This allows you to see the straylight on other tracks. The dataset number and fits files used to create this net are in the title of the figure.


image

Figure 23B: The net for one dataset (dark-lite-dark) for all tracks illuminated or not. This allows you to see the straylight on other tracks. The dataset number and fits files used to create this net are in the title of the figure.


image

Figure 24B: The net for one dataset (dark-lite-dark) for all tracks illuminated or not. This allows you to see the straylight on other tracks. The dataset number and fits files used to create this net are in the title of the figure.


image

Figure 25B: The net for one dataset (dark-lite-dark) for all tracks illuminated or not. This allows you to see the straylight on other tracks. The dataset number and fits files used to create this net are in the title of the figure.


image

Figure 26B: The net for one dataset (dark-lite-dark) for all tracks illuminated or not. This allows you to see the straylight on other tracks. The dataset number and fits files used to create this net are in the title of the figure.


image

Figure 27B: The net for one dataset (dark-lite-dark) for all tracks illuminated or not. This allows you to see the straylight on other tracks. The dataset number and fits files used to create this net are in the title of the figure.


image

Figure 28B: The net for one dataset (dark-lite-dark) for all tracks illuminated or not. This allows you to see the straylight on other tracks. The dataset number and fits files used to create this net are in the title of the figure.


image

Figure 29B: The net for one dataset (dark-lite-dark) for all tracks illuminated or not. This allows you to see the straylight on other tracks. The dataset number and fits files used to create this net are in the title of the figure.



pwd: E:\zflora\mldata2\mobyrefresh\characterization\Hawaii-2019-01\BS3cal
Date: 28-Jan-2019 10:41:26
Created from mkhtml2_(1)